
ENERGY ·�CONTROL�· SYSTEM
ECL Interpreter and Command List

3-348-870-03
3/7.02

Operating Instructions

2 GOSSEN METRAWATT GMBH

Table of Contents Page

1 ECL Interpreter . 3
1.1 Introduction . 3
1.2 Value Range, Numbers and Character Strings . 5
1.3 Arguments, Extensions, Assignments and Error Messages . 6
1.4 Aborting Programs . 8
1.5 The System Prompt and Online Help . 8
1.6 Overview of ECL Command Groups . 10
1.7 Tool Box . 11

2 ECL Command List . 17
2.1 General Information . 17
2.2 Command List . 23
2.3 Command Equivalents . 84

3 Parameter Search Terms . 85

4 Product Support . 88

ECS operating system revision level: V2.47

GOSSEN METRAWATT GMBH 3

1 ECL Interpreter

1.1 Introduction
The ECL command interpreter (ECL = Energy Control Language) serves as the logic interface between a
summator and a PC (host computer) or terminal. Signals are physically transmitted via an RS 232 serial
interface.

The exchange of data with additional summators which are linked via the ECS LAN is carried out as if the
addressed summator were directly linked to the PC or the terminal.

Communication is accomplished with plain text commands, and the output format can be adapted as
desired to any database or user-specific requirements. The individual commands can be strung together
one after the other, and the sequence in which they are processed can be subjected to specified
conditions. A complete programming language is thus made available. We call this programming language
ECL – Energy Control Language.
ECL is a mixture of FORTH and BASIC. Anyone who is familiar with Reverse Polish Notation (RPN), which is
used for the HP pocket calculator, and who has had a bit of experience in programming with BASIC, will not
have any trouble with the new language.

You may well ask why ECS needs a high-level language at all. On the one hand, the summators are
equipped with virtual channels whose definition requires unambiguous notation (especially for device-
overriding energy import), and, on the other hand, the efficient programming of relay outputs and other
operations is only possible with a full-fledged programming language. Imagine having to explain the
following to summator 'B':

We enter (while logged on to summator B:):

We can analyze the individual components of this command sequence for purposes of clarity:
As already mentioned above, commands are strung together, resulting in a command sequence. As
opposed to BASIC, these command sequences do not create any new semantic problems (semantics:
meaning) , because interaction of the individual commands depends upon a clearly defined parameter
stack. The stack is a LIFO memory (last in first out), i.e. elements are removed in the opposite order in
which they were added.

Example:
We add the elements 1, 5, 8 and 17 to the stack in the order shown here. When removing these elements,
17 is removed first, then 8, then 5 and finally 1.
Every command pushes its “result” to the stack, or pops elements from the stack. For example, the
addition command '+' pops 2 elements from the stack, adds these together and pushes the result to the
stack.

Relay 1 at summator 'B' is activated when the sum of instantaneous power from channels 1
to 5 at summator 'A', plus channels 8 and 17 at summator 'G5', is greater than 125 kW.

 A:Pmom – 1..5, G5:Pmom – 8+17, +,125,>,IF,Rel 1=1, ELSE,Rel 1=0

4 GOSSEN METRAWATT GMBH

The output command '!' pops an element from the stack and “prints” it out. Thus:

The well known BASIC format is valid within the command:

Function name (argument1, argument2; ...)

Here we have taken advantage of a syntax trick. Brackets around the arguments, as well as commas
between them, can, and must be omitted.

• A blank serves as the delimiter between the function name (ECL command) and the argument
(parameter), as well as between the arguments.

• Either a comma or a semicolon can be used as the delimiter between commands.

ECL command parameter1 parameter2 ... = assignment1 assignment2 ...

The above example is already becoming clearer.
Thus the first command is written:

A: instructs the command interpreter to forward the current command to device A (in accordance with our
example, we can assume that we are currently communicating with device B). However, the result (in this
case the sum of instantaneous power for channels 1 through 5) is sent to device B and is pushed to the
stack (added to LIFO memory). The second command:
,

pushes the sum of instantaneous power for channels 8 and 17 at device 'G5' to the stack.

The third command '+' adds the two instantaneous power sums together, after which the fourth command
'125' pushes the number 125 to the stack.
The fifth command '>' compares the resulting sum with 125 (..sum > 125). If the result of the comparison
is positive, i.e. if the ..sum is indeed greater than 125, a 1 is pushed to the stack. Otherwise a 0 (zero) is
pushed to the stack.

The sixth command 'IF' determines whether or not the first relay is activated (REL 1=1) or

deactivated (REL 1=0).

2,5,+,! : reads out ’7’ (addition of 2 + 5)

17.5;–4;3;*;+;! : reads out ’5.5’ (multiplication of -4 * 3 = -12, and then addition of 17.5 + -12 =
5.5)

A:Pmom – 1..5

G5:Pmom – 8+17

+, 125, >

IF, Rel 1=1

ELSE, Rel 1=0

GOSSEN METRAWATT GMBH 5

1.2 Value Range, Numbers and Character Strings
Numeric data which occur at the summators may encompass a very broad range. However, accuracy is of
greater significance than the extent of the value range, and accuracy is expressed here in the form of
significant decimal places. 15 significant decimal places are available, and the value range which can be
represented within the interpreter encompasses 27 places before, and 9 places after the decimal point.

Note☞
If 15 places are insufficient for the representation of a number, exponential notation is activated
internally (64 bit floating decimal point).

For example, the following energy value can be processed without sacrificing any accuracy:

1,234,567,890.12345 kWh

All calculation operations which are made available by the interpreter comply with the specified accuracy.

We can use the designation REAL for this data type, even though a comparison with real numbers is
somewhat lacking. At any rate, we should make a note of the following: The interpreter only recognizes this
one data type where numbers are concerned. Integer values represent a sub-group of REAL (with the
exception of enumerations, e.g. 1..4+7).

Remember:
The parameter stack only accepts elements of the REAL type.

The following mathematical functions are available:

Character strings
Character strings can be processed in addition to numbers. Character strings may include letters, numbers
and special characters strung together in any desired fashion. The name of a channel is a character string.
An assignment is written as follows:

Programs themselves are also character strings. The sample command sequence shown above is run in
device B: where it functions as background program H 10 and continuously monitors relay status:

Basic arithmetic functions + – * / MOD
Boolean operations & | ^
Comparisons < <= == != >= >
Transformations INT INTR FRAC ABS
Square roots SQRT
Trigonometric functions
(based upon radian measure)

SIN COS ASIN ACOS

Exponential functions EXP LOG **

Channel 4=AREA5b

 H 10= ’A:Pmom – 1..5, G5:Pmom – 8+17, +,125,>,IF,Rel 1=1, ELSE,Rel 1=0’

6 GOSSEN METRAWATT GMBH

Thus characters strings can also contain blanks or special characters such as commas and the like. For
this reason, character strings must be opened and closed with turned commas or quotation marks, if
blanks or other special characters which are significant for syntax appear within the character string.

Example: The read out function ! prints the character string which has been forwarded as a parameter:

Remember:
The utilized character string delimiters may not appear within the character string itself! If turned commas
are used as delimiters, quotation marks may be used within the character string, but not turned commas
(and vice versa).

There is no stack for character strings, but the last used character string is always saved to the clipboard.
This makes it possible, for example, to copy an existing program to another program.

Program P1 at device A: is enumerated and copied to program P11 at device B:. The $ sign serves as a
command which indicates that the contents of the character string clipboard must be used.

1.3 Arguments, Extensions, Assignments and Error Messages
Each command can be executed with up to three arguments, should this be deemed appropriate.
Arguments are also designated as parameters of an ECL command in ECL.
The subsequent assignment operator '=' allows for the entry of additional arguments within assignment
operations. Command extensions can also be used to control command characteristics.

The argument type is dependent upon the command, and several types per argument are possible as
well. The following types have been defined:

The following notations are used for enumerations:

! “the ’print-out’! “ : the ’print-out’!

REAL : 12 / 27.3 / –36.3E–2
ENUMERATION : 2..7+V1..V7 / * / ** / #
. : pops a REAL element from the parameter stack
Character String : “an ’example’ ... “ / Channel-5
$: uses the contents of the character string clipboard

2..7 : Channel 2 through channel 7
2+7 : Channel 2 and channel 7
V1..V3 : Virtual channels V1(== channel 25) through V3 (== channel 27)
2..7+V1 : Channels 2 through 7 and V1
1..8+17+20..V3 : Channels 1 through 8 and channel 17, and channels 20 through V3
* : All activated (ON) channels (see ON/OFF function)
** : All possible channels
: All channels which have been formatted for the data logger
: All possible channels which have been formatted for the data logger

A:P! 1,b:P 11=$

GOSSEN METRAWATT GMBH 7

The extension influences the characteristics of most commands. Extensions can be combined as
required, if this is useful. Detailed information � ECL Command List

Example based upon total energy Etot from channel 2 (channel name = furnace):

The assignment operator allocates a command instead of reading out an assignment:

A value of 123.23 is entered into the total energy register for channel 1.

– : Suppress output (if available)
– – : Reroute output to memory
+ : Attach output directly, without “new line”
. : Read-out for databases, delimiter ’;’, terminator <CR><LF>
.. : Same as . but with delimiter ’;’ between output blocks

... : Same as .. but delimiting of several lines with ’;’ instead of with
<CR><LF>

: Read out number only, i.e. without additional information, terminator
<CR><LF>

: Read out number only, i.e. without additional information, terminator ’;’
% : The first parameter formats the output (see PRINTFORMAT)
& : The ID, for example A1:), is also read out at the beginning of the line.
&& : The ID as a number (e.g. 2:) is also read out at the beginning of the line.
* � : Command modification, e.g. pulse instead of energy output (see ETOT)
_ : Harmonized (re-writable) output of energy commands
| : Additional output format option (see ETOT)
/ : Output with indication of time “to”
// : Output with indication of time “from” ... “to”
^ : Output with indication of time “to” in seconds as of 1/1/1990
^^ : Output with indication of time “from” ... “to” in seconds as of 1/1/1990
$: Together with . or #, name is read out in “” ($$: time also)
! : Forces output (example: P! 3 lists program P3)

Etot 2 : ETot (02: furnace) = 21.31 kWh
Etot& 2 : A:ETot (02: furnace) = 21.31 kWh
Etot. 2 : ETot ;2; furnace;21.30527;kWh
Etot# 2 : 21.30527
Etot/ 2 : 15.08.92 23:10:11 : ETot (02) = 21.31 kWh
Etot#// 2 : 10.08.92;14:00:04;15.08.92;23:11:21;21.30527
Etot/## 1..4 : 15.08.92;23:11:21;0;21.30527;0;0
Etot^## 1..4 : 82768281;0;21.30527;0;0
EMON 1 2 : EMon 01 2 = 500.00 kWh, [re-writable]
EMON* 1 2 : EMon* (01: Area 501) = 50000.00 [number of pulses]

Etot 1=123.23 $

8 GOSSEN METRAWATT GMBH

Examples
The last points can be summarized with the help of an example. The following is assumed: we are
communicating with device A:, B:Channel 17 has been named “Channel17”, and ETotT1 2 has a value of
222.22 kWh:

• Enter the name of the 17th channel at device B: to character string buffer memory, no output.
• Assign channel names V1 through V4 and V8 with '$' (character string clipboard).
• Output: Name <<Channel17>>, Value = 222.22
• Push EtotT1 from channel 2 to the parameter stack.
• Assignment of the top element in the parameter stack (=EtotT1 2) from ETot channels 5 through 8 at D:.

Note☞
As is demonstrated in this example, either upper or lower case letters can be used for command
names.

Error Messages
ECL reads out plain text error messages which are helpful for troubleshooting. As soon as an error occurs,
program execution is interrupted and an error message is read out.
Errors in background programs are only read out upon request. The “ERR” command can be used to
generate a list of error messages for all background programs.
Summator and channel errors can be queried with the commands ERRSTAT and ERRCHAN, and can be
masked as desired.
Please do not forget that ECL is an interpretive programming language. Program commands are not
evaluated (interpreted) until they are executed. For example, if there is an error in the command sequence
between IF ... ELSE, the appropriate error message cannot be read out until this part of the program is
executed, i.e. the IF condition has been fulfilled (==1).

1.4 Aborting Programs
Processing of command sequences can be aborted by the ECL interpreter with the following key
combination: <CTRL> + X
Background programs cannot be aborted in this way. Background programs are aborted by entering the
HBREAK command. The HBREAK command aborts the current background program and interrupts
processing for 16 seconds, after which the sequence is started again with H 0.

1.5 The System Prompt and Online Help
After pressing the <ENTER KEY> , the summator responds with its prompt:

<A>
The prompt tells us with which summator we are currently communicating, in this case the summator with
the ID A:. A command or a command sequence can be entered after the prompt. A maximum of 128
characters per line are possible. Entry is concluded and processing is started with the <ENTER KEY>. As
soon as the command has been completely processed, the prompt appears again.

Logging On
The ECS LAN allows the user to log on to any device within the network. The interpreter functions as if the
terminal were directly connected to the RS 232 interface of the corresponding device. Only the prompt
indicates with which device we are currently communicating.

<A>b:Chan – 17, c:Chan V1..V4+V8=$, !“Name <<“ $ “>>, Value = “, EtotT1#+ 2, d:Etot 5..8=.

GOSSEN METRAWATT GMBH 9

For example, enter the following command to log on to device B1:
B1: :

If device B1 is available, a new prompt appears: <B1>. As of this point in time, communication is carried
out directly with device B1, i.e. all commands entered without an ID apply to device B1.

List of Possible Commands, Online Help
A list of all available ECL interpreter commands can be queried with the following command:

HELP or ?
All commands are now listed according to functional groups. Keywords are also displayed for general
topics. Further detailed help concerning each of the commands and keywords is obtained by entering the
command:

HELP <search term> or ? <search term>
(A blank, i.e. space, must be entered between HELP or ? and <search term>)
Example:
You want to query general information concerning the use of parameters. The search term can be entered
in abbreviated form, as long as the abbreviation is unambiguous:

A complete read-out of all help texts can be obtained by entering:

This read-out can be routed to a data file or a printer with ECSoft 2 parameters configuring software.

Note☞
The online help system provides information concerning all ECL interpreter commands. This
information is always updated to the currently installed revision of the operating software.

? Para

? Book

10 GOSSEN METRAWATT GMBH

1.6 Overview of ECL Command Groups

Stack operations:
+ – * / & | ^ ~ && || ^^ ~~ SHR SHL < <= > >= == != DUP DROP SWAP PICK STKS PRINT !

Basic arithmetic operations, Boolean comparisons:
+ – * / & | ^ < <= > >= == !=

Conditional program branching and loops:
ALL ALS NEXTA FORI I NEXTI DO DOWHILE EXIT RETURN PAUSE
IF IFF ELSE ENDIF

Mathematical functions and numbers manipulations:
SQRT SIN COS ASIN ACOS DEG RAD EXP LOG LOG10 ** ABS FRAC FIX INT INTR MAX MIN MOD

Total energy values, costs and instantaneous power:
Etot EtotT1 EtotT1T2 EtotT2 CostT1 CostT1T2 CostT2

Interval energy, energy per day, month and year, maxima:
Eint Eday Emon Eyear Emax EmDay EmMon EmYear

Power values:
Pint Pday Pmon Pyear Pmax PmDay PmMon PmYear Pmom

Creation of virtual channels, time and calendar functions:
VSUM VIRT DAY WDAY MON YEAR HH MM SS FROM TO DURATION
TIME DATE DVSUM DVIRT DELTA

Intervalic data logger:
Setting the interval, formatting, index, deleting the list, deleting channels:
INTERVAL INTERVALSOURCE SYNC FORMAT INDEX ERASELIST ERASECHAN

Tariff with tariff parameters:
TARIFF TARIFFSOURCE TUNIT TFIX COSTFAC1 COSTFAC2

Summator Parameters:
Station and group name, error recognition:
GROUP MENUAPP MENUAPPN LEVEL RS232 STATION STATUS SYSDC SYSRESET SYSSN ERR
ERRCHAN ERRCHANLIST ERRNO ERRSTAT LPERR PERR

Channel Parameters:
Channel name, meter constant, Urat/Irat, KFix, units, ON/OFF PFactor ...
CHANNEL MCONST URAT IRAT EUNIT PUNIT EDGE PULSE ONOFF CFIX PFACTOR CMODE
LNAME ANAUSEL STARTSTOP CFACTOR

Input query, control relays, additional tools, list of auxiliary power interruptions:
RELAY RELAYMODE RELAYNAME DISPLAY PASSWORD PAUSE POWERFAIL POWERON KEY

H and P programs, print commands:
HBREAK H HLIST Q QLIST P PLIST LPSEARCH ERR LERR ERRLIST REM

Directory of ECS LAN users, additional tools:
DIR DIRN DIRS INDIR ENUM FINDER ID MELD REM SETID VER SetLanR SetLanL

GOSSEN METRAWATT GMBH 11

LON:
LONANA LONFAKTOR LONID LONCHANNEL LONMAXCHANNEL LONOFFSET LONP LONSTOP
LONTYPE LONUSERS LONVER LONZW LONStatTiming LONPollDelay SetLON

Analog values:
ANA ANAFACTOR ANAFIX ANAMAX ANAMAXR ANAMAXRN ANAMIN ANAMMCLR ANAMODE
ANAN ANAOFFSET ANAR ANARESO ANARS ANASSEL ANAUSEL

Variables:
A ALIST B BLIST

Time commands:
TIME DATE TM TMD HTD LASTUPD FROM TO DURATION SUWI DAYBEG MONBEG

Other:
ENUM DELIMITER CHAIN DEVKEY DISPLAY FINDER LOGIN LOGOUT MELD PASSWORD KEY TX1
TX2 VER WHOAMI

1.7 Tool Box
A few useful sample programs suffice for familiarizing yourself with the ECL interpreter.
Please keep in mind that background programs are executed in a cyclical fashion, and that execution time
for the individual H programs influences overall cycle time for this reason!

Hello!
The “Hello!” message is displayed at all summators as long as Pmom (1) > 30 kW. Example for the
practical use of background programs:

Setting Time and Date for All Stations within the Network
The following command sets all clocks within the ECS LAN:

Synchronizing All Clocks within the Network
All clocks are synchronized to station A:, for example every day at 0h00:15. An 'x' in the time or date field
is replaced with the current value from the station at which the program is executed. The ALL loop
command with the '–' ending executes the ALL loop for all stations except for the station at which the
program is executed (in this case A).

Tariff Switching
T1 (NT) is valid from 21h to 6h, and T2 (HT) is otherwise valid. The tariff source must be set to “Program”!

Tariff Synchronization within the Network
System-wide tariff synchronization to station A: (for example). The tariff source must be set to “Program”
for all stations!

Alternative: Updating of the valid tariff should not be performed continuously, but rather only after a tariff
change (the command sequence between IFF and ELSE is only executed once in the case of IFF, i.e. after a
change of condition):

H 10=’pmom – 1.30,>,if,all,meld “Hello !“ 2’

all, time=12h34.56; date=16.08.93

<A> H 10= ’if 0h0.15, ALL –, Time=x:x:x, Date=x.x.x’

<A> H 11= ’hh,6,>=,hh,21,<,&,if, Tariff=2, else, Tariff=1’

<A> H 12= ’ tariff –,all –,dup,tariff=. ’

<A> H 12= ’ tariff –,1,–,iff,all –,tariff=2,nexta,else,all –,tariff=1 ’

12 GOSSEN METRAWATT GMBH

Interval Synchronization within the Network
The external synchronization pulse is fed (for example) to station A: via channel 24 (A:interval source=24).
This station performs interval synchronization for all other stations within the ECS LAN.
The interval source at the slave stations must be set to “Program”.

Print-Out of H29 Print Program every Evening at 19h30
The following is to be printed:

• All energy values registered at all active meter channels for the current day (system-wide with date as
header: “Consumption for Current Day on 23 March 1999 at 19:30:00”)

Note☞
Read-outs from the background programs can be routed to the COM2 port for processing with
the “ECL+HP” Com2 mode!

Copying P and H Programs

P 10 copies all P programs, P 11 all H programs to station B:

Continuous Logging of Operating Hours
Whenever the load component is switched on, 24 V are applied to input 4, otherwise 0 V.
Operating hours can be read from channel 3 in the Etot display (in seconds). Etot for channel 4 indicates
how many times the load component was switched on. In order to initialize counting, P 18 must be
executed, and evaluation is performed with H 6:

Meter Gating
Meter 1 is only active when input 8 is set to 'high level' (1). The respective meter channel can be controlled
with the STARTSTOP command.

Activating a Relay based upon PMOM
Relay 1 at summator B: is activated as soon as instantaneous power from virtual channel V2 at summator
A: exceeds 55 kW.
This background program is run at summator B, and monitors Pmom at summator A.

<A> H 13= ’ Sync,iff,all –,sync= ’

<A> H 29= ’if 19h30, P 29’
<A> P 29= ’! – – “\r\n usage on %/// DD\r\n“, TX2 $, all eday&– – *, TX2 $, na‘

<A> H 14= ’if 1.x.x 12h, h19’
<A> H 19= ’emon% “usage in %/dM 19%/dy“ 1 1,!!,all,emon& *,na,!!’

P 10= ’! “Copy all P programs to B:“,0.31,fori,i,p – .,i,B:p=$’
P 11= ’! “Copy all H programs to B:“,0.31,fori,i,h – .,i,B:h=$’

P 18= ’! “Prepare operating hours counting“,mconst 4=1,channel 4=switch,p 19’
P 19= ’channel 3=OpHours, eunit 3=sec,eunit 4=times,cfix 3..4=0,etot 3..4=0’
H 6=’in – 4,if,time –,dup,a 6,–,etot – 3,+,etot 3=., else,time –, endif, a6=.’

H 7=’in – 8,iff,startstop 1=1,else,startstop 1=0’

 H 10= ’A:Pmom – V2, 55, >, IF, Rel 1=1, ELSE, Rel 1=0’

GOSSEN METRAWATT GMBH 13

Monitoring the Number of ECS LAN Users
If the number of ECS LAN users deviates from the specified quantity (in this case 4), a warning is displayed
at the LCDs at all stations, and relay 4 at station X1 is activated.
This background program runs at station A. The exact number of users must be known, and must be
imbedded into the program.

Switching between Daylight Savings and Standard Time
An H program is required for each time shift at any selected station (e.g. the station which performs
system-wide interval synchronization).
Switching takes place in the months of March and October on the last Sunday of the month at 2h / 3h.

The following applies to all stations within the network:

H programs for time shifting may not be run at any other stations within the network in this case!

Bridging a Missing Synchronization Pulse
If no synchronization pulse occurs for a period of greater than 10 s more than the selected interval
duration, an “artificial” interval is generated. If a single station serves as the “interval synchronization
master”, the program need only be installed to this station.

Pulse Generation based upon Energy from a Virtual Channel
One pulse is read out from relay 1 for each 10 kWh (division factor 1/10) of energy at virtual channel V1. A
background program (H 0), a P program (P 0) and a variable (A 0) are required.
P 0 is executed by H 0 because memory capacity is insufficient for the implementation of all commands in
H 0. As soon as H 0 is programmed, variable A 0 is initialized. Pulse output is started as of this point in
time, and pulse duration, as well as interpulse period, can be adjusted (see marking in P 0).
'PAUSE 0' causes a pulse duration / interpulse period of approx. 80 ms, and pulse duration / interpulse
period can otherwise be adjusted in steps of 200 ms.

Example for 400 ms pulse duration / interpulse period: 'PAUSE 400'
If V1 is increased due to a reset or the assignment of a physical channel, an attempt is made to generate
as many pulses as required to bring the number of pulses back into equilibrium (if the output of more than
50 pulses is required, no balancing takes place). If the value is decreased, pulse generation is
automatically restarted as of the reduced value.
The pulse generation division factor is marked in H 0 (number of pulses = energy / division factor).

<A> H 18= ’Bus –,4,!=,dup,X1:Rel 4=.,IF, ALL,meld “BUS inconsistency“ 2’

<A> H18= ‘Rem Summer/Winter, SUWI, IF, TIME –, +, TIME=.‘

<A> H 18= ’Rem Summer/Winter, SUWI, IF, TIME –, +, TIME=. , ALL –, TIME= x:x:x’

<A> H 14= ’rem SYNC-BRIDGING, sync/, interval –, –,10,>,iff, sync+=’

H 0= ’1,iff,etot – v1,10,/,int,a=.,endif,etot – v1,10,/,int,dup,a,–,dup,dup,p,a=.’
P 0= ’0,>,swap,51,<,&,if,2,*,1,fori,i,2,mod,rel 1=.,PAUSE 0,nexti,else,drop’

14 GOSSEN METRAWATT GMBH

Querying the Data Logger
All Pint records (up to Pint-1) in the data logger for channel 1 at station A: as of 17.08.92 18h45 are to be
read out. “From” and “to” values for time and date are also read out:

Output:
17.08.92 18:30:00 – – 17.08.92 18:45:00 : Pint–215 (01) = 1.23 kW
17.08.92 18:45:00 – – 17.08.92 19:00:00 : Pint–214 (01) = 1.80 kW
17.08.92 19:00:00 – – 17.08.92 19:15:00 : Pint–213 (01) = 1.12 kW
17.08.92 19:15:00 – – 17.08.92 19:30:00 : Pint–212 (01) = 2.10 kW
17.08.92 19:30:00 – – 17.08.92 19:45:00 : Pint–211 (01) = 2.05 kW
17.08.92 19:45:00 – – 17.08.92 20:00:00 : Pint–210 (01) = 2.07 kW
...
All Eint records in database format (through Eint – 0) with time and date “to” values are read out. This
command series is assigned to P 2:

Output:
16.08.92;17:45:00;1;0.5;0.75;0.99
16.08.92;18:00:00;1.01;0.1;0.76;0.80
16.08.92;18:15:00;0.99;0.48;0.75;1.02
16.08.92;18:30:00;0.89;0.5;0.76;0.99
16.08.92;18:45:00;1;0.52;0.77;1
16.08.92;19:00:00;1.01;0.51;0.75;0.98
...

Creating a Database in ASCII Format
Columns = Channels
A database needs to be created in ASCII format (delimiter = ;), which contains the following selection of
measured data from all summators within the ECS LAN:
Energy totals ETOT, ETOTT1 and ETOTT2, as well as instantaneous power PMOM.
Column headings: Station, Function, Value for Channel 1 ... Value for Channel V8
The first line contains the column headings.

Station Function 1 2 3 ... 32
A Channel Furnace Motor015 Channel-3 ... TotCost8

A Etot 12.7 6.956 0 ... 147.9734

A ETOTT1 12.7 6.956 0 ... 147.9734

A ETOTT2 0 0 0 ... 0

A Pmom 0 0 0 ... 0.37

...

C1 Channel Motor001 Motor002 Motor003 ... TotMot01

C1 Etot 0 17.22 158 ... 1379.5554

C1 ETOTT1 55.3 0.12 0 ... 147.9734

C1 ETOTT2 0 0.93 0 ... 192.11

C1 Pmom 0.54 1.17 0 ... 5.557

...

<A> index 17.8.92 18h45, pint// 1 . *

<A>P 2=’Eint/## # * **
<A>p 2

GOSSEN METRAWATT GMBH 15

The ASCII database is laid out as follows:
Station;Function;1;2;3; ... ;32
A;Channel; Furnace; Motor015; Channel-3; ... ;TotCost8
A;Etot;12.7;6.956;0; ... ;147.9734
A;ETOTT1;12.7;6.956;0; ... ;147.9734
A;ETOTT2;0;0;0; ... ;0
A;Pmom;0.37;0;0; ... ;0.37
...
C1;Channel;Motor001;Motor002;Motor003; ... ;TotMot01
C1;Etot;0;17.22;158; ... ;1379.5554
C1;ETOTT1;55.3;0.12;0; ... 147.9734
C1;ETOTT2;0;0.93;0; ... ;192.11
C1;Pmom;0.54;1.17;0; ... ;5.557
...
Executing P 10 at the station connected to the PC via the RS 232 interface generates the desired output.
P 11 through P 13 are sub-programs of P 10.
Program P 10 (together with its sub-programs) can only be executed at the station connected to the PC
(logged on with its ID): P 10

Note☞
An ID with the format AA: always addresses the station which is connected to the PC.

This read out can be routed directly to a data file with ECSoft 2. Meta-language commands used in the
script allow for automation of ECSoft.

Creating a Database in ASCII Format
Columns = Functions
A database needs to be created in ASCII format (delimiter = ;), which contains the following selection of
measured data from all summators within the ECS LAN:
Energy totals ETOT, ETOTT1 and ETOTT2, as well as instantaneous power PMOM.
Column Headings: Station, Channel No., Channel, ETOT, ETOTT1, ETOTT2, PMOM

AA:P 10=’! “Station;Function;“,enum##+ **,aqll,AA:p 12,AA:p 13’
AA:P 11=’ID,!+ “;Channel;“, channel##+ **’
AA:P 12=’ID,!+ “;Etot;“, etot##+ **, ID,!+“;EtotT1;“,etotT1##+ **’
AA:P 13=’ID,!+ “;EtotT2;“,etotT2##+ **,ID,!+ “;Pmom; “,PMOM##+ **’

16 GOSSEN METRAWATT GMBH

The first line contains the column headings.

The ASCII database is laid out as follows:
Station;Channel No.;Channel;Etot;EtotT1;EtotT2;Pmom
A;1;Furnace;12.7;12.7;0;0.37
A;2;Motor015;6.956;6.956;0;0
A;3;Channel-3;0;0;0;0
A;...
A;32;TotCost8;147.9734;147.9734;0;0.37
...
C1;1;Motor001;0;55.3;0;0.54
C1;2;Motor002;17.22;0.12;0.93;1.17
C1;3;Motor003;158;0;0;0
C1;...
C1;32;TotMot01;1379.5554;147.9734;192.11;5.557
...
Executing P 15 at the station connected to the PC via the RS 232 interface generates the desired output.
P 16 through P 18 are sub-programs of P 15.
Program P 15 (together with its sub-programs) can only be executed at the station connected to the PC
(logged on with its ID): P 15
Note: An ID with the format AA: always addresses the station which is connected to the PC.

This read out can be routed directly to a data file with ECSoft 2. Meta-language commands used in the
script allow for automation of ECSoft.

Station Channel No. Channel Etot EtotT1 EtotT2 Pmom
A 1 Furnace 12.7 12.7 0 0.37

A 2 Motor015 6.956 6.956 0 0

A 3 Channel-3 0 0 0 0

A ...

A 32 TotCost8 147.9734 147.9734 0 0.37

...

C1 1 Motor001 0 55.3 0 0.54

C1 2 Motor002 17.22 0.12 0.93 1.17

C1 3 Motor003 158 0 0 0

C1 ...

C1 32 TotMot01 1379.5554 147.9734 192.11 5.557

...

AA:P 15=’! “Station;Channel-No.;Channel;Rtot;EtotT1;EtotT2;Pmom“,AA:p 16’
AA:P 16=’all,fori **,i,AA:p 17,AA:p 18,nexti,nexta’
AA:P 17=’dup,channel& .,!+ “;“,dup,etot+# .,!+ “;“,drop,dup,etott1+# .’
AA:P 18=’!+ “;“,drop,dup,etott2+# .,!+ “;“,drop,pmom+# .,drop’

GOSSEN METRAWATT GMBH 17

2 ECL Command List

2.1 General Information

Online Command List

General
Information

General Information Concerning Use of ECL Interpreter Commands:

Abort a read-out: ^X (CTRL and X simultaneously)
Abort read-outs from background programs:
– Entry is possible, even during read-out
– Abort command: see HBREAK (16 s pause for H programs)
– Control character ^B disables output from H programs for 10 s

(H program read-outs are ignored during this time).

Querying special online help texts:
– The search term can be entered in abbreviated form, as long as the

abbreviation is unambiguous.
– Short-forms are available for some commands (shown in brackets),

the command search functions with the short-forms as well.
– Read-out of all online help texts: ? BOOK

Compatibility:
– The implemented ECL version is upward compatible to the ECL version

for U1600/10/15 summators.
New commands and command formats which are not available for
U1600/10/15 summators are identified as follows: (U1600: n.a.):
(U1600: n.a.) : not available
(U1600: l.a.) : limited availability, i.e. only with direct COM

access via U1600/10/15 NOT available.

ECL SYNTAXECL SYNTAX, Definition of Meta-Language Terms:

<command sequence>:= <ID><command> [, | ; <command sequence>]
<command> := <text><ext> [__<par>[__<par>[__ . .]]]

[=[<par>[__<par>[__..]]]]
<ID> := {A AA A1 . . A9 AN B B1 . . B9 C . . Z4 ZZ} : | :: [__]
<ext> := [{ ! + – # . * / ^ $ _ ? | @ }]^
<par> := <real> | <character string> | <enumeration> | . | $
<real> := [–]<integer>[E <integer>]
<integer> := [–]{0 . . 9}^
<character string>:= [“ | ’] <text> [__<text>]^ [’ | “]
<text> := {a . . z A . . Z 0 . . 9 _ – +}^
<enumeration>:= { * ** # ## <chan> } [. . | + | – | ^ [<chan>]]^
<channel> := <integer> | {V1 . . V8}

<abcd> := : Definition of a term
[] : Optional entries
<ab> | <cd> : Alternative
{ . . } : List
[. .]^ or {. .}^ : Repetition
__ : Blank

18 GOSSEN METRAWATT GMBH

Extensions Extensions

The extension (Ext) <ext> influences command characteristics (see
extension examples). The following rules apply in general:

Examples for the Use of Extensions

– : Suppress output (if available)

– – : Reroute output to memory (command must recognize
Ext %).

+ : Attach output directly, without "new line"
! : Forces output (example: P! 3 lists program P3)
% : The first parameter formats the output (see PRINTFORMAT)
& : The ID is also read out at the beginning of the line (see ID)
* @ : Command modification, e.g. pulse instead of energy output

(see ETOT)
_ : Harmonized (re-writable) output of energy commands
| : Additional output format option (see ETOT)
. : Read-out for databases, delimiter ’;’, terminator

>CR><LF>
. . : Same as . but with delimiter ’;’ between output blocks

. . . : Same as . . but delimiting of several lines with ’;’ instead of
with <CR><LF>

: Read out primary value only. ## and ### are analogous
to . . and . . .

/ : Output with time indication (see FROM or TO for more
information)

^ : Output with time indicated in seconds as of 1.1.1990

ETOT 1+V2 : Etot (01 : Area501) = 874.01 kWh
Etot (V2 : Area777) = 12.74 kWh

ETOT. 1+V2 : Etot;1;Area501;874.0124;kWh
Etot;26;Area777;12.739;kWh

ETOT.. 1+V2 : Etot;1;Area501;874.0124;kWh;ETot;
26;Area777;12.739;kWh

ETOT# 1+V2 : 874,0124
12,739

ETOT## 1+25+V2 : 874.0124;100;12,739
ETOT_ 1 2 : Emon 01 2 = 500.00 kWh

[re-writable]
ETOT* 1 2 : Emon* (01:Area501) = 50000.00

[number of pulses]
ETOT// 1 2 : 01.09.92 00:00:00– –01.10.92 00:00:00

Emon–2 (01: ...)
ETOT/## 1..4 2 : 01.10.92;00:00:00;500;1,1234;7555;

0,0001
ETOT^## 1..4 2 : 86745600;500;1,1234;7555;0,0001
INTERVAL& : A:INTERVAL = 15 minutes

GOSSEN METRAWATT GMBH 19

Command
Parameters

Command Parameters

The following PARAMETERS can be included in commands (examples):
Enumerations: [search for names, see FINDER]

<enumeration> range 1 ... 64 or (if possible) 0 ... 63
2..9+15+17 : 2 to 9 and 15 and 17
5+V1..V4 : 5 and V1(=25) to V4 (=28)
2..16–5–8+24 : 2 to 16 and 24, without 5 and 8
* : All active (ON) channels (see ONOFF).

if reference not included: ’**’
: All formatted channels (see FORMAT)
** : 1 to 32
–3..6 : All ’’, but not 3 to 6
+7^+10..12 : Complement of (all ’’ and 7)

plus 10 to 12
. : An element from the stack, with places

after the decimal point removed
.. : An enumeration from the stack,

see ENUM (U1600 only)
i : Current i, j or k meter variable

(U1600: n.a.)

General Numeric Notation:
–12.34E3 : <real>
8 : <integer>
0x12ab : <hexadecimal> (32 bit)
0b100101 : <binary> (32 bit)
. : from Stack
i : Current i_meter variable, j+k analog

(U1600: n.a.)
t : Real-time second count to 1/1000 s

(U1600: n.a.)
t_ : Second count at operating hours meter " "

(U1600: n.a.)
Please observe reference to station for time
queries, see TIME.

General character strings (see STRINGS)
Hello : <string>
“Hello ’World’“ : <string> delimited with "", because blanks

are included in string
$: From char. string memory (clipboard)

20 GOSSEN METRAWATT GMBH

FINDER FINDER : System-wide search for channel names, relay names or station names

– The name of the sought after channel can be entered instead of
<enumeration> for channel-specific functions (also applies to REL... for
relay name and ID for station names). The entire ECS LAN is queried for
the search term, starting with the prompt station.

– The search term must begin with a letter, otherwise it must be preceded
with ’$’.

– "Name*" finds the first occurrence of "name...", regardless of upper or
lower case letters. "Name**" reads out all appropriate channels from the
first possible (!) station.

– <searchTerm>& queries the current station only.
– <searchTerm>@@ suppresses the ’... not found’ message.

Parameter Stack Parameter Stack

The parameter stack is a LIFO memory (last in first out), which transfers
numeric parameters between commands. The stack can be manipulated
with certain terms (DUP DROP PICK SWAP...). These commands remove
(pop) values from the stack, and enter (push) values to the stack.

Stack behavior is an essential component of the command definition. The
following applies in general: Values are NEVER PUSHED TO THE STACK
during writing (use of the ‘=‘ character).

Note☞
The stack and the clipboard are only valid when a line is being
processed (nesting with P programs is possible). As soon as the
prompt reappears, the stack is deleted. This allows for a consistent
programming environment.

Clipboard
A clipboard is available for strings, which always contains the last string
results during reading. For example, the STATION command stores the
name of the station (summator) to the clipboard during reading.
Reference is made to the clipboard under Parameters: ‘$‘

Variables
64 registers A0 ... A63, and 64 registers B0 ... B63 are available for
permanent storage of <real> numbers (see A, B).

FINDER (FI) : Function for querying all station data available for a
given search term

Query : FINDER <searchTerm>>
Stack : – >>> <channelNo.> <IDnumber>

<1: found/0: not found>
Ext : * (search for relay name)

@@(search for station name)

Stack
Depth : 63

Data Type : <real> : 64 bit floating decimal point
(15 significant decimal places)

GOSSEN METRAWATT GMBH 21

STRINGSSTRINGS (= character strings)

Inserting special/control characters to strings with the ‘\‘ prefix:]

– Characters not mentioned: \z � z
– Conversion of meta-codes into the corresponding character does NOT

take place during the ASSIGNMENT of a string (except with \“ and \’):
p=’! “letter \#\065\#“’ , p! : P 0=’! “letter \#\065\#“’
p : letter “A“

IDID

Each station (summator) has a unique ID.
There are 255 IDs (A, A1... A9, B, B1... B9... Z4) as well as 3 special IDs.

Example for special ID ZZ:
A P program is started while logged on to a remote station.
P contains an ALL loop from which a further P program is executed which
relates to the same logical station. Because reference to the fixed station is
not provided within the ALL loop, ZZ: makes it possible to reinstate the fixed
reference, without having to name the station explicitly!
<C> .. ALL, .. , P 15, ...executes P 15 at ALL stations
<C> .. ALL, .. , ZZ:P 15, ...executes P 15 at station C: only

\# : “ \“ : “
\| : ’ \’ : ’
\\ : \
\b : 0x08 backspace
\l : 0x12 ^L
\n : 0x0A (LF)
\r : 0x0D (CR)
\t : 0x09 (TAB)

\nnn : nnn = ’3 digit decimal number’ in accordance with the
character code

\000 : insert nothing (U1600: n.a.)
\- : do not convert remaining characters (% ... , \ ...) (U1600: n.a.)

AA : ID of the station connected to the RS 232 interface
ZZ : ID of the station indicated at the interpreter prompt
AN : Gets an ID as a number from the stack (A==1... Z4==255)

A1:<command>
or
A1:

: complete ID context switch

A1: <command>
or
A1:, ...

: switches ID for current line only

A1:<command> : ID applies to current command only

22 GOSSEN METRAWATT GMBH

RS 232 Interface
Protocol

RS 232 Interface Protocol

Protocol Flags

– Protocol Flags ^A, ^V and ^B always apply to the next command only.
– ^V and ^B suppress inclusion of H program output for 10 seconds plus

duration of the command.
– Checksum: addition to 16 bit INT, fixed 4-digit representation in HEX

Device Status Device Status

An overview of important device parameters can be read out with the ECL
command STATUS (abbreviated STAT). The following represents a typical
print-out:

^M (RETURN) 13d : Sends the input line. The system prompt
appears after the response (e.g. <A1>)
[no prompt: ^W^M]

^J (CTRL-
RETURN)

10d : Same as RETURN, but ^Z (SUB, 26d)
appears instead of the prompt
(suitable for host connection and in
combination with ^V)

^X (CAN) 24d : Cancel output, erase all buffers and
flags

^Y (EM) 25d : Erase line, no output
ESC 27d : Erase line, cursor moves to new line at

monitor

^B (STX) 02d : Suppresses input echo for current line
^A (SOH) 01d : Prefix for coded error message: ^A nnn

^A^A : Same as ^A, except
instead of nnn error number:
^A <ErrText>

^V (SYN) 22d : Erase internal checksum and prefix for
output with "Checksum after SUB"

^V^V : Checksum must follow ^M or ^J,
response: ACK/NAK

Station : A4:AreaG48 [Lab]
ECS U1601 : Software V2.47 (22.03.02)
Interval : 1 m (time)
Format (0) : 64 channels, 3966 records (2.8 days), 193 used
Tariff : T1 (program)
Relay : R1:p R2:p R3:p R4:p R5:p R6:p
24 V Output : OK
Lithium Batt. : OK
Status Relay : 1 (OK), coupled
Max. L-Level : 1 (0:Lo....3:Hi)
COM1 : 9600 baud, parity: off, protocol: Xon/Xoff, ECL
COM2 : 115200 baud, parity: off, protocol: Xon/Xoff
LON : Users: 1
BUS L : 375 kBaud (4D), user L: 10(1), total: 12
BUS R : 375 kBaud (4D), user R: 2(1)

GOSSEN METRAWATT GMBH 23

2.2 Command List

General Numeric
Manipulations

ABS FRAC INT INTR MIN MAX MOD FIX FIXE

– FIX or FIXE are valid for the rest of the line.
– FIX n with n >= 7 switches to floating point representation with up to n

decimal places. Default: n=7. (U1600: floating point as of n>=9, default:
n=9)

– FIX also accepts negative arguments: The number is rounded to the
amount of the indicated number of digits and is displayed with a floating,
rather than a fixed decimal point (U1600: n.a.).

– FIX / FIXE allow for the entry of a parameter (the stack remains
unchanged):
FIX <n> == <n>, FIX

– Exponential representation with FIXE always has a fixed width (dependent
upon the number of decimal places), and a plus or minus sign is always
entered as either + or - with the extension ’+’.

Example for FIX:
12.345, FIX 0, ! � 12 12.345, FIX 5, ! � 12.34500
12.345, 2, FIX, ! � 12.35 12.345, 9, FIX, ! � 12.345

Example for FIXE:
12.345, FIXE 2, ! � 1.23E+01 12.345, FIXE+ 3, ! ��+1.235E+01
–12.345, FIXE 3, ! ��-1.235E+01

Stack:
ABS : <value> >>> Absolute value function (<value>)
FRAC : <value> >>> Fraction (<value>)
INT : <value> >>> Integral part (<value>)
MIN : a b >>> The lesser of a and b
MAX : a b >>> The larger of a and b
MOD : a b >>> (a modulo b)
FIX : n >>> – Fixed decimal representation,

n = number of places after the
decimal

FIXE : n >>> – Exponential representation,
n = number of places after the
decimal (U1600: n.a.)

Fixed
Decimal
Setting

: FIX FIXE

24 GOSSEN METRAWATT GMBH

ALL NEXTA ALL NEXTA (NA) : Program Loop, "All IDs"

The loop command allows a single command to address all stations. There
is no control variable, and the current ID of the line is incremented (only IDs
from stations connected to the ECS LAN).

– With <selection> : { A | B | U | R | | P | * } the device list is
limited to a given device class (see DIR).

– When executing P sub-programs from within the ALL loop, please refer to
the example of special ID ZZ: (see ID).

– See example under INDIR for a demonstration of the internal sequence of
ALL...

Examples
ALL, etot 1, nexta output: Etot channel 1 for all devices
ALL, etot 1, nexta output: Etot channel 1 for all devices except

for prompt device

Arithmetic
Operators

+ – * / ** & && | || ^ ^^ XOR < <= > >= == != !

Query : ALL [<fromIDNumber> [<toIDNumber>]] NEXTA
Stack : – >>> – – >>> –
Ext : – : Omits the station with the

current ID
Query : ALL [<selection>] U1600: n.a.)

+ : a b >>> (a + b)
– : a b >>> (a – b)
* : a b >>> (a * b)
/ : a b >>> (a / b)
** : a b >>> (a to the power of b)
& : a b >>> (a logical AND b)
&& : a b >>> bit-wise AND (32 bit)
| : a b >>> (a logical OR b)
|| : a b >>> bit-wise OR (32 bit)
^ : a >>> (NOT a)
^^ : a b >>> bit-wise complement (32 bit)
XOR : a b >>> (a XOR b)

bit-wise exclusive OR (32 bit)
SHL :: a n >>> (shift 32 bit left n*)

SHL <n> :: a >>> (Sh... n*)
SHR :: a n >>> (shift 32 bit right n*)

SHR <n> :: a >>> (Sh... n*)
< : a b >>> (compare a < b) yes = 1, no = 0
<= : a b >>> (compare a � b) yes = 1, no = 0
> : a b >>> (compare a > b) yes = 1, no = 0
>= : a b >>> (compare a � b) yes = 1, no = 0
== : a b >>> (a equals b)
!= : a b >>> (a does not equal b)
! : Stack output function pops a number from the stack

and reads it out.
See PRINT for other uses of the ! command.

GOSSEN METRAWATT GMBH 25

Bit Shifts and Binary-BCD Transformations

Note☞
Commands identified with "::" have only limited availability with
U1600/10/15 (U1600: l.a.).

The following applies to logical comparisons:
FALSE: equal to 0.0, TRUE: not equal to 0.0

A/B RegistersA0 . . A63 : Registers A0 ... A63 for <real> numbers (U1600: A0 ... A9)
B0 . . B63 : Registers B0 ... B63 for <real> numbers (U1600: n.a.).

– A without <enumeration> == A0
– A1 . . A19 correspond to A 1 . . A 19, A5! == A! 5
– Increment (+1) : A++ <enumeration>
– Decrement (–1) : A–– <enumeration>
– Add <value> to register:

A++ <enumeration> = <value>
– Subtract <value> from register:

A–– <enumeration> = <value>
– <newValue> == {t|z} assigns the current second count

(with 1/100 s).
ALIST or ALIST <enumeration> :Lists A registers
(corresponds to A! *)

SHL :: a n >>> (shift 32 bit left n*)
SHL <n> :: a >>> (Sh... n*)
SHR :: a n >>> (shift 32 bit right n*)
SHR <n> :: a >>> (Sh... n*)

BIN2BCD :: bin >>> bcd Binary � BCD; example:
1234 >>> 0x1234

BCD2BIN :: bcd >>> bin BCD � binary; example:
0x1234 >>> 1234

Query A <enumeration> [=<newValue>]

Stack : – >>> Content
(Ai) Query (sum is generated for

enumeration)

value >>> – Assignment
Ext : + – . # ! ++ – – %

26 GOSSEN METRAWATT GMBH

Analog Processing ANA: Analog Processing

Analog Inputs
– Energy is calculated from an analog power value with AnaMODE = 2.
– To count pulses, select AnaMODE=3. The input status can be queried

with INPUT {0|1}. The LEVEL command defines the switching threshold:
0 = 10%, 1 = 250 = 10%, 1 = 25% (default), 2 = 50%, 3 = 70% of full
range. PULSEDURATION is used to evaluate the input status.

– STARTSTOP influences energy computing in AnaMODE= 2 or 3.
– The input characteristic is selected with AnaMODSEL

(device hardware must also be configured accordingly).

– U1601 makes 12 inputs available at channels 1 through 12.
– U1615 makes a maximum of 7 inputs available at channels 1 through 7.
Analog Outputs:
– The AnaRESO command has no significance,

(for U1615: AnaMAX and AnaMIN as well).
AnaMODE 2, 3 is not allowable.

– U1601 makes 2 outputs available at channels 13 + 14.
– U1615 makes a maximum of 7 outputs (unipolar only) available at

channels 1 through 7.
– The output characteristic is selected with AnaMODSEL.

The following applies to U1601 (device hardware must also be configured
correspondingly):

– The following applies to U1615:

– Slave pointer mean value generation (accurate to the second) is activated
at the analog output with the AnaINT command (where n > 0). The output
and ANA (reading) continuously read out the mean value of assigned ANA
values for the last n seconds. AnaINT is available with U1601 variants
manufactured as of 8 November 1999.

0 : –10 ... 0 ... +10 V
1 : –20 ... 0 ... +20 mA
2 : –5 ... 0 ... +5 mA
3 : S0
4 : 3 ... 20 mA (20 mA range)

0 : –10 ... 0 ... +10 V
1 : –20 ... 0 ... +20 mA
4 : 4 ... 20 mA (20 mA range)

0 : 0 ... +20 mA
1 : 4 ... 20 mA (20 mA range)

Query : AnaINT <channel> [= <value>] mean value generation
interval in seconds (*)

0 : Default instantaneous value
1...60 : Slave pointer interval

GOSSEN METRAWATT GMBH 27

Relay Outputs (U1615 only):
– Only the AnaModID and AnaRelMap commands are logical.
– The U1615 makes up to 7 relay outputs (normally open contact) available

at channels 1 though 7.

General
– Ext ’?’ (ANA? 1) suppresses the "function not available" error message

at stations not equipped with analog processing.
– Commands identified with (*) are not available at the U1615.

Query : ANA <channel> analog input

Query : ANA <channel> =<value> analog output

Query : AnaR <channel> [=<value>] analog I/O, raw value
corresponding to
AnaModSel (*)

Query : AnaN <channel> [=<value>] analog I/O,
–1 ... 0 ... +1
scaled value (*)

Query : AnaRS <channel> [=<value>] analog I/O, raw value
corresponding to
AnaModSel, prefix
range (see AnaSSEL)
although not restricted.

Query : AnaMAX <channel> [=<value>] maximum (with time
stamp:)
ANAMAX/ <channel>)

Query : AnaMIN <channel> [=<value>] minimum (new time
stamp:)
ANAMIN/ <k> = <w>)

Query : AnaMAXR, AnaMINR maximum/minimum,
same value range as
AnaR (*)

Query : AnaMAXN, AnaMINN maximum/minimum,
same value range as
AnaN (*)

Query : AnaMMCLR <channel> = 0 maximum and
minimum (*)

Query : AnaFACTOR <channel> [=<value>]

28 GOSSEN METRAWATT GMBH

Query : AnaOFFSET <channel> [=<value>]
ANA = AnaN * AnaFACTOR + AnaOFFSET
AnaOFFSET = minimum scale value
AnaFACTOR = full scale value - minimum scale value

Example
Measured values 0 through 20 mA are to be assigned to a

temperature range of
200 to 300° C.

AnaOFFSET = 200
AnaFACTOR = 300 - 200 = 100

Query : AnaUSEL <channel> [=<value>] Ana unit, <value>:
0 = none
1 = EUNIT
2 = PUNIT

Query : AnaFIX <channel> [=<value>] fixed point for analog
value (U1600: n.a.)
0 : 0.
1 : 0.0
2 : 0.00
3 : 0.000
9 : Floating decimal
(floating decimal for
<value> : 4 ... 9)

Query : AnaSSEL <channel> [=<value>] +/–range, <value>:
0 = +/–, 1 = +, 2 = –

Query : AnaRESO <channel> [=<value>] res. in meas. points
Specification: 2000

Query : AnaModID <channel> module type
(query only)

Query : AnaModSN <channel> module serial number
(query only)

Query : AnaModDC <channel> module date code
(query only)

Query : AnaCAL [*]
<channel> <m> [=<value>] module calibration

Query : AnaModSel <chan> [=<value>] internal function:
module selection
I/O option

Query : AnaRelMap
<module> [=<relay>] mapping of relay modules

to relay numbers
<relay>

0 : identity
1 ... 7 : <module> is <assigned> to relay

GOSSEN METRAWATT GMBH 29

ENUMENUM : reads out a list of channel numbers included in the <enumeration>

– <Enumeration> range: 1 to 64 or 0 to 63
– Examples of <enumeration>: see PARAMETERS

Specific Enumerations
<ENUM>
*AA : all analog output modules (AnaMODID == 2)
*AE : all analog input modules (AnaMODID == 1)
*EN : all ENergy channels (CMODE == 2..4)
*EV : all possible event applications (EVENTAPP)
*ERR : all channels with errors (ERRCHAN <> 0)
*ERIS : all channels in service (ERRCHAN-24)
*LA : all LON analog input channels (CMODE == LonAna)
*LI : all LON binary input channels (CMODE == LonInp)
*LO : all LON energy meter channels (CMODE == LOn)
*LR : all LON relay channels (CMODE == LonRel)

Query : AnaT test for Ana activity
(U1615 only).
stack : – >>> {0 | 1}
1 : Anna active,
0 : Anna not active.
No output

Query : AnaINT
<channel> [= <value>] mean value generating interval in

seconds (*)
0 : default

instantaneous val.
1... 60: Slave pointer

interval

Query : AnaMODE <channel> [=<mode>]
<mode> ETOT PMOM ANA

0 OFF : * * –
1 ANA : * * ana
2 P �E: etot(ana) ana ana
3 COUN: etot(count) pmom(count) ana/count
4 LON : LON LON ana
5 LonA: * * ana
6 L-PE: LON LON ana
7 LonI: * * ana
8 LonR: * * ana
(* : basic function unaffected)

Query : ENUM <enumeration>
Stack : – >>> number of elements
Ext : + – # # %

30 GOSSEN METRAWATT GMBH

ENUM@ ENUM@ : Pushes enumeration number to stack (one bit per chan. � 64 bit)

– Commands which accept an enumeration can pop both stack values,
<enumNum_33_64> and <enumNum_01_32>, from the stack and
evaluate them with special stack reference "..".
Example: ENUM@ 1..4, ETOT ..

– The 1st bit (LSB) corresponds to 1, and the 32nd bit corresponds to 32 in
<enumNum_01_32>. Bits 33 through 64 are in <enumNum_33_64>.

– U1600/10/15 only recognizes enumerations with 32 bits (0..31 or 1..32).
Only one element is exchanged via the stack.

– <Enumeration> range: 1 to 64
– Commands which anticipate enumerations as of zero (PLIST, ALIST...),

interpret the <enumeration number> with a channel offset of 1. The ext.
'@', or explicit enumeration as of zero, requires correct bit positions:
ENUM@@ 2..4, PLIST .. � lists P-Prog. 2..4
ENUM@ 2..4, PLIST .. � lists P-Prog. 1..3
ENUM@@ 0..4, PLIST .. � lists P-Prog. 0..4
ENUM@ 0..4, PLIST .. � lists P-Prog. 0..4

BUS, BUSL, BUSR BUS BUSL BUSR : ECS LAN Status

Reads out the number of devices connected to the ECS LAN: total number,
number bus left (direct neighbors), number bus right (...)

Examples
BUS : total bus users = 8, BL = 3(1), BR = 4(4)
BUS. : 8; 3; 1; 4; 4; 0; 0 [last two values: L; R errors (1:error)]
BUS# : 8
BUSL# : 3

Query : ENUM@ <enumeration>
Output : no
Ext : @
Stack : – >>> <enumNum_33_64> <enumNum_01_32>

Command: Stack U1600/10/15: Stack U1601/2/3/...:
ENUM@ : – >>> <enumNum_01_32> – >>> <enumNum_33_64> <enumNum_01_32>

ETOT ... : <enumNum_01_32> >>> – <enumNum_33_64> <enumNum_01_32> >>> –

Query : BUS
Stack : – >>> <number_of_bus_users>

BUS: total number
BUSL: number left, or –1 for

BUS L error
BUSR: number right, or –1 for

BUS R error
Ext : + – . #

GOSSEN METRAWATT GMBH 31

CHAINCHAIN : Linking of command read-outs with the double ext. "##",

Joining of entries from the clipboard

– CHAIN is available with firmware versions as of 16 May 1999.
– Although it is quite simple to change the output of a single-channel

oriented command from "multi-line" (values delineated with <CR><LF>)
to single line (values delineated with semicolons), this type of output is
quite difficult if the data originate from several commands (see example
under DELI). CHAIN notifies the output function that the output header for
each command with a double ext. (e.g. "##", ".." or "%%") only functions
as a <record delimiter> for the command after CHAIN, and otherwise as
a <field delimiter>. The '+' ext. only functions for the first command after
CHAIN.
Example: CHAIN,CHANNEL## 1,MCONST## 1+3,URAT## 1,!## Test
--> Channel 1;100;640;1;Test

– All clipboard read-outs generated after CHAIN with ext. '--' are strung
together (total length 128 characters). In the absence of CHAIN, clipboard
read-out is re-initialized for each command. The clipboard reference '$'
makes reference to the clipboard prior to the execution of CHAIN. Linking
must therefore be ended with CHAIN- before the linked clipboard can be
read out.
Example:
!-- "one",!-- "two",!$ --> two
CHAIN,!-- "one",!-- "two",CHAIN-,!$ --> one

two
– As explained above, the '+' ext. only functions for the first command after

CHAIN. CHAIN$ is used for the simple joining of strings. CHAIN$ does not
alter output header processing.
CHAIN,!-- "one",!--+ "two",CHAIN-,!$ --> one

two
CHAIN$,!-- "one",!--+ "two",CHAIN-,!$ --> one

two

Query : CHAIN Start chain
Output : no End chain
Stack : – >>> –
Ext : $

32 GOSSEN METRAWATT GMBH

DATEFORMAT DATEFORMAT (DATEFOR) : Sets the date for all date outputs:

– Commands with date output: Override current format with Ext ~
– Possible values for <dformat>:

dd.mm.yy (tt.mm.jj) � 31.12.93: ~
mm/dd/yy (mm/tt/jj) � 12/31/93: ~~
mm–dd–yy (mm–tt–jj) � 12–31–93: ~~~

– Only the first 2 or 3 characters must be specified {dd mm/ mm–}.
– Ext ‘|‘pushes the current format index to the stack during reading.

DATEFOR | : – >>> <format index> (U1600: n.a.)
– LISTDATEFORMAT generates a list of all available date formats (U1600: n.a.)

DELIMITER DELIMITER (DELI) (DL) : Sets the delimiter for remainder of the command line

– DELI without parameters causes reset to default values:
<fieldDelimiter> = ';' <recordDelimiter> = "\r\n" [<CR><LF>]

– Both delimiters may contain up to 8 ASCII characters.
– Empty delimiters are also possible: DELI \000 \000 (U1600: l.a.)
– In order to maintain a consistent programming environment, new delimiters apply

only to the rest of the command line, after which the default values apply again.
– Ext * reverses parameter order: DELI* <record Delimiter>[__<fieldDelimiter>]
– If only one parameter is stated, the other remains unchanged.
– Applies to Ext. '.': <recordDelimiter> = <fieldDelimiter> (U1600: l.a.).
– Applies to Ext. '#': <fieldDelimiter> = <recordDelimiter> (as of Feb. ’02).
– Ext '+' suppresses the next <recordDelimiter> in the output (U1600:

l.a.). Redirection to the clipboard without read-out (with Ext. '--') usually
includes the first <recordDelimiter>, which means that the desired
suppression in the read-out is not (or is no longer) possible. Remedy:
Redirection with appendix (Ext. '--+').

Examples
• Instead of using the normal ';' delimiter, the dBASE command APPEND

FROM ... DELIMITED is delimited with ','. Strings should be placed within
quotation marks (" ") (Ext. '$'):
DELI ","; ETOT.$ 1 � "ETot",1,"channel-1",127.34,"kWh"

• Several different values should be delimited for output with semicolons.
<recordDelimeter> and <fieldDelimiter> are set to equal values to this
end, and the first semicolon is suppressed (note: read-outs always start
with <recordDelimiter>):
!!,DELI.+, CHANNEL# 1,MCONST# 1+3,URAT# 1,! Test �
channel-1;100;640;1;Test

Query : DATEFORMAT [=<dformat>]
Output : yes
Ext : + – # . $ %

Query : DELI [[<fieldDelimiter>] [_ _<recordDelimiter>]]
Output no
Stack : – >>> –
Ext : *

GOSSEN METRAWATT GMBH 33

DELTADELTA

– STARTSTOP enables assignment (STSP == 1) or ignores it (STSP == 0).
– The <value> can be weighted with an optional <factor> (U1600: n.a.).

DevKEYDevKEY : Query Device Key
Enter Enabling Code (open code)

– Protected device settings (such as passwords) can be initialized (deleted)
with DevKEY.
Procedure:
Query the current device key: DEVKEY
Please inform your device dealer of this key and request an enabling code
(specifically for your key) for a certain task (e.g. delete all ECL and control
panel passwords).
Entering the enabling (open) code: DEVKEY = <openCode>

– Important: DEVKEY functions system-wide, and correct addressing for
the DEVKEY command must be observed. As soon as the enabling code
assignment has been correctly entered, both the device key and the code
become INVALID! If an additional enabling code is required, a NEW key
must be queried with DEVKEY and the entire process must be repeated.
As long as a key remains valid, it can be queried as often as desired.

DELTA : One-time addition of an energy quantity to a channel.
Corresponds to a one-time only utilization of DVIRT
with a specific energy value.

Query : DELTA <enumeration> [<factor>] = <value>
Stack : – >>> –
Ext : |

DELTA| ... : Only positive quantities are considered.
DELTA| | ... : Only negative quantities are considered.

Query : DEVKEY DEVKEY = <openCode>
Function : Key query Open (see below)
Output : yes no no
Stack : – >>> <systemKey> – >>> –

34 GOSSEN METRAWATT GMBH

DIR, DIRN, DIRS DIR DIRN DIRS : Directory of All ECS LAN Users

– DIR containing ESC LAN information: see DIRS
– The user list can be limited by entering a selection criterion (1600 n.a.).

DISPLAY DISPLAY (DD) : Read out display

– The cursor in the display is encoded with a preceding ’&’.
– Encoding on the LED/RELAY information line:

'-' : OFF,
'*' : ON,

– Ext # : output without "" quotation marks
– Ext | : only shows LED line (U1600: l.a.)
– Ext | | : only shows text lines (U1600: l.a.)
– This command is also valid for U1602 and U1603, although they are not

equipped with a physical display.

<selection> : { A | B | U | R | P | * }
DIR : ID only for all users (A:)
DIRN : ID and STATION NAME of all users (A: U1601)
DIRN_ : ID and STATION NAME of the selected stations
Stack : – >>> –
Ext : + – # . %

DIRS : Same as DIR, but with information for each ID. L =
left, R = right, + = direct neighbor, * = “me”

Stack : – >>> <number_of_bus_users>
Ext : + – # .

* : all stations (need not be entered)
U : all U16xx stations (AB or BA also possible)
A : all U1600/10/15 stations
B : U1601 stations

Query : DISPLAY [<keyboardString ...>]
<keyboardString ...> : see KEY

Stack : – >>> –
Ext : + – # |
Output : U1600:

3 lines: 1st + 2nd LCD line + 1 line indicating status of
the 8 LEDs
[LAN/L LAN/R R1 R2 R3 R4 STATUS STAT24V]
U1601: 17 lines: LCD lines 1 through 16 + 1 line
indicating status of the 4 LEDs, and status of the 6
relays
[STATUS LAN/L LAN/R LON R1 R2 R3 R4 R5 R6]

GOSSEN METRAWATT GMBH 35

DUP, DROP, SWAP,
PICK

DUP (DU) DROP (DR) SWAP (SW) PICK : Stack Manipulations

DVSUM, DVIRTdVSUM dVIRT : Definition function used for creating virtual channels (in a
background H program) with "differential summation".

– DVIRT can be used for all channels, but only one time per channel. DVIRT
may only be executed in H programs and CANNOT be influenced with
IF..THEN..ELSE.

– Partial energy / power is multiplied by the <factor>, if one is entered.
Attention: The <factor> must be static, i.e. it may not be altered by the
program sequence.

– Ext. '|' is only possible with DVIRT. If this ext. is used, only positive ('|'), or
only negative ("||") quantities and power values are considered.
Applications example: A base channel is broken down into an import and
an export channel. Limitations: This function only works correctly if
exactly one summator channel is used. Use with several summator
channels may result in infinite addition/subtraction of minimal
differences. Only energy quantities and power values generated by
DVSUM/DVIRT are restricted in combination with ext. '+', and not energy
measured directly from the target channel.

– Instantaneous power, PMOM, for the created channel corresponds to the
sum of instantaneous power at the base channels. If DVIRT generation is
interrupted for more than 30 s, PMOM is set to zero, or to the measured

DUP : n1 n2 >>> n1 n2 n2
DROP : n1 n2 n3 >>> n1 n2
SWAP : n1 n2 >>> n2 n1

DUP <n> : Executes DUP n times.
DROP <n> : Executes DROP n times.
PICK <i> : Copies the ith stack element to the top.

’PICK 1’ == ’DUP’

dVSUM : Generates totals for enumerated channels and stores
them to intermediate registers.

Query : dVSUM <enumeration> [<factor>]
Stack : – >>> –

dVIRT : Assigns intermediate register differential sums to the
virtual channels

Query : dVIRT <enumeration> [<factor>] =
Stack : – >>> –
Ext : + * |

dVIRT+ ... : Calculated energy is added to energy measured at the
target channel. Measured energy has no effect
without ext ‘+‘.

dVIRT* ... : The intermediate registers are normally cleared after
DVIRT. However, they remain intact if ext ‘*‘ is used.

36 GOSSEN METRAWATT GMBH

RMS value. Shorter interruptions DO NOT result in data loss for energy
quantities!

– The sums at the virtual channel are entirely independent of the base
channels (indefinite linking). Generated sums can be directly deleted.

– STARTSTOP can be used independently of the base channels for this
reason.

– One-time addition of an energy quantity to a channel: see DELTA
– Efficiency: Each DVSUM command uses an ECS LAN frame, regardless of

the <base_enumeration>. However, the DVIRT command uses one ECS
LAN frame per channel for the <target_enumeration>.

Examples
– Channel 26 from station D: creates a cost center with channels 1 ... 5+8

at station B: (weighted 0.7) and channel 4 from station C: (weighted 0.3):
H 1 = ‘B:DVSUM 1 .. 5+8 0.7, C:VSUM 4 0.3. D:VIRT 26=‘

– Channel 10 is equal to the balance of channels 1 ... 8 and the total sum
of channel 9 (sum 1 ... 8 less channel 9)
H 2 = ‘DVSUM 1 .. 8, DVSUM 9 –1, DVIRT 10=‘

EUNIT, PUNIT, AUNIT,
TUNIT

EUNIT PUNIT AUNIT TUNIT : Units of Measure fpr Energy E, Power P,
Analog I/O and the Tariff (max. 4 char.)

– See CHANNEL for usable characters.
– In order to be able to use the analog unit of measure, ANAUSEL

<chan> = 3 must be selected.
– AUNIT is not available with U1600/10/15, response is an empty string.

ETOT, ETOTT1,
COSTT1, ETOTT2,
COSTT2, ETOTT1T2,
COSTT1T2, PMOM

Etot EtotT1 COSTT1 EtotT2 COSTT2 EtotT1T2 COSTT1T2 PMOM:

Query : EUNIT <enumeration> [=<characterString>]
Output : yes
Clipboard : <unit>
Stack : – >>> –
Ext : + – . # $ %

Etot : Total energy
EtotT1 : Total energy, tariff 1
COSTT1 : Costs, tariff 1
EtotT2 : Total energy, tariff 2
COSTT2 : Costs, tariff 2
EtotT1T2 : Total energy, tariffs 1+2
COSTT1T2 : Costs, tariffs 1+2
PMOM : Instantaneous power
Query : ETOT <enumeration> [=<newValue>]

Stack : – >>> <value
>

(in the case of enumerations,
<value> = total (individual
values))

Ext : + – . # / * _ | $ %

GOSSEN METRAWATT GMBH 37

– Ext * can be used to output the (calculated) number of pulses instead of
energy.
Example: ’ETOT* 1’
Mconst, Urat and Irat of the corresponding channels are used in the
calculations (even with virtual channels).

– Ext | reads out <value> and <unit> only:
Etot | 1 � 123.34 kWh

– <newValue> == 0 � Time data are also deleted.
(FROM = 0, TO = 0)

Measuring Instantaneous Power, PMOM:
– If the input has been configured as a meter, instantaneous power is

calculated based upon the interval between the last two pulses. Intervals
of greater than 130 s cause deletion of Pmom data. If time since the last
pulse is greater than the last interval between two pulses, it is used as a
reference for Pmom measurement.
PFACTOR is also taken into consideration in the calculation of
instantaneous power.

Time data provided along with PMOM ext. ‘/‘or ‘//‘is interpreted as follows:

– FROM time data (resolution: 1 s) is generated based upon LASTUPD (see
below). If resolution < 1 s is required, LASTUPD must be used. For time
spans of greater than 20 days, FROM time = 0 (01.01.1990 00:00:00).

– U1600/10/15: PMOM does not provide any usable time data (FROM=0,
TO=0)

– Time from the last channel update (energy change) can be determined in
seconds (resolution: 1 ms) with LASTUPD.

– The maximum time span is 20 days. The following applies to longer time
spans (any desired duration): <value> = 1728000 s == 20 days.

– For channels which are not equipped with time span calculation,
<value> = 0.

PMOM// : FROM_time : The point in time of the last energy
change corresponds to the point in time
of the last meter pulse.

PMOM/ : TO–time : Current time

LASTUPD
(LUPD)

: Time duration [S] since last channel update (U1600: n.a.)

Query : LASTUPD <enumeration>
Output : yes
Stack : – >>> <value> (in the case of enumerations,

<value> = sum (individual values))
Ext : ! + – . # %

38 GOSSEN METRAWATT GMBH

EINT, PINT EINT PINT : Interval Energy and Power

Output starts with <startIndex> and is carried out in chronological order:
<startIndex> no entry � <startIndex> = 0
<startIndex>==’*’ � <startIndex> = first entry in time
<how_many> no entry � <how_many> = 1
<how_many>==’**’ : all entries as of <startIndex> (with Eint–0)
<how_many>==’**’ : all entries as of <startIndex> (WITHOUT Eint–0)
<how_many> greater than <startIndex> : “““ “
– Search for a certain index: see INDEX
– The data list must be formatted for a channel selection (# enumeration).

Formatting and format info are accessed with the FORMAT command.
– Entries to the data logger (except for current value) are compressed at the

expense of accuracy (see FORMAT).
– Only EINT## is suitable for rapid data transmission.

Power Optimization
– PINT@ <enumeration> reads out mean power values for the currently

running interval with high accuracy (within the first second), because
even fractions of a millisecond are taken into consideration. Normal
power calculation (PINT <enumeration>) always works with full seconds.
For power optimization, it is important that the data settle in relatively
quickly at the beginning of the interval, and that they do not demonstrate
excessive overswing. PINT@ ... should be used for applications of this
sort. PINT@ may only be used as of version 1.63m with U1600/10/15
summators (even for access via ECS LAN).

ERR, LERR, LBERR,
ERRNR, ERRSTAT,
ERRSTATLIST,
ERRCHAN,
ERRCHANLIST

ERR LERR LBERR ERRNR ERRSTAT ERRSTATLIST ERRCHAN ERRCHANLIST

ECL Interpreter Error

Query : EINT <enumChan> [<startIndex>] [<how_many>][=<new
Value>]

Stack : – >>> <value> (in the case of enumerations:
<value> = total (individual values))

Ext : + – . # / * _ | $ % @

ERR : Read out error status for H background programs
Query : ERR
Output : yes
Stack : – >>> –
Ext : _ (suppresses the

"no error in ..." message.)

LERR : Last error, error number of last execution of the
current H program

Query : LEER
Output : no
Stack : – >>> <n> <n> : Error number (see

below) or 0 (no error)

GOSSEN METRAWATT GMBH 39

– ERRLIST corresponds to ERRNR (U1600: n.a.)

Err000: OK
Err001: Exit
Err002: General error
Err003: Syntax error
Err004: Error: Not enough parameters
Err005: Error: Too many parameters
Err006: Error: Incorrect argument range
Err007: Error: Number is too large
Err008: Error: Division by zero
Err009: Error: Excessive program nesting
Err010: Error: Excessive IF/ELSE nesting
Err011: Error: Excessive FOR nesting
Err012: Error: ALL-nesting is not possible
Err013: Error: Function not available
Err014: Error: Only virtual channels allowed
Err015: Error: No virtual channels allowed
Err016: Error: Index range exceeded
Err017: Error: Assignment is not possible.
Err018: Error: Incorrect time/date entry
Err019: Error: Extension cannot be used
Err020: Error: Search term not found
Err021: Internal error
Err022: Error: Only usable in H prog.
Err023: No access authority
Err024: Error: Entry line too long
Err025: Error: Incorrect ID
Err026: Error: Unknown user
Err027: Error: Bus timeout
Err028: Access denied
Err029:
Err030:
Err031:

LBERR : Last bus error; same as LERR, but only ECS LAN
relevant errors are indicated (otherwise 0).

ERRNR : Error number � description
Query : ERRNR <enumeration> ERRNR
Output : yes
Stack : – >>> – <ErrNr> >>> –
Clipboard : Error description (ErrNr)
Ext : + – . # $ %

40 GOSSEN METRAWATT GMBH

Station Errors

– Entry of errors to be displayed per enumeration: <error mask enum>,
32 bit numeric entry (LSB set: view error 1 ...): <error mask>

– No entry of [<error mask enum>] or [<error mask>]:
ALL errors

– Only the following errors are recognized for U1600/10/15:
8: internal battery error, 11: Uv failure,
21: LAN/L error, 22: LAN/R error

ErrStat 01: Self-test error
ErrStat 02: ROM error
ErrStat 03: RAM error
ErrStat 04: EEPROM A error
ErrStat 05: EEPROM B error
ErrStat 06: User error A
ErrStat 07:
ErrStat 08: Internal battery error
ErrStat 09:
ErrStat 10:
ErrStat 11: Uv failure
ErrStat 12:
ErrStat 13:
ErrStat 14: COM1 communications error
ErrStat 15: COM2 communications error
ErrStat 16: COM3 communications error
ErrStat 17: LAN communications error
ErrStat 18:
ErrStat 19:
ErrStat 20:
ErrStat 21: LAN/L error

ERRSTAT : Query current station error status
Query : ERRSTAT [<error mask enum>]
Query : ERRSTAT@ [<error mask>]
Output : yes
Stack : – >>> <error_word>
Ext : _ (suppresses the

"no error in ..." message.)

ERRSTATLIST : List of all possible station errors
Query : ERRSTATLIST <error no. emum> ERRSTATLIST
Output : yes
Stack : – >>> – <error_no.>
Clipboard : Error description (error_no.)
Ext : + – . # $ %

GOSSEN METRAWATT GMBH 41

ErrStat 22: LAN/R error
ErrStat 23: LON error
ErrStat 24:
ErrStat 25:
ErrStat 26:
ErrStat 27:
ErrStat 28:
ErrStat 29: Battery nearly depleted
ErrStat 30:
ErrStat 31:
ErrStat 32:

Channel Errors

– Entry of errors to be displayed per enumeration: <error_mask_enum>,
32 bit numeric entry (LSB set: view error 1 ...): <error_mask>

– No entry of [<error_mask_enum>] or [<error_mask>]: ALL errors
– All system-wide channel errors are listed with "ALL, ERRCHAN&_ *". One

frame is required per channel: in the case of m stations and 64 activated
channels, this corresponds to m*64 frames.

– The device-specific "*ERR" enumeration, available as of V2.45, can be
used for significantly faster querying of all channel errors:
ALL, ERRCHAN&_ *err
All U1601/2/3 stations within the network must be equipped with V2.45
or higher. "*ERR" otherwise reads out an empty list for older devices.

– ERRCHAN* (Ext.'*') requires one frame per station in order to enter all
channel errors to the specified error mask. However, channel assignment
is not possible in this case (channel info = 0).

– U1600/10/15 always reads out "no error".

ERRCHAN : Query current channel error status
Query : ERRCHAN <channel_enum> [<error_mask_enum>]
Query : ERRCHAN@ <channel_enum> [<error mask>]
Output : yes

Stack : – >>> <error_word> (OR’d from all <error word>s)

Ext : _ (suppresses the "no error in ..." message)

* (error output for all channels together, not
separately)

ERRCHAN-
LIST

: List of all possible channel errors

Query : ERRCHANLIST <channel_enum> <error_no._enum>
ERRCHANLIST <channel_enum>

Output : yes
Stack : – >>> – <error_no.> >>> –
Clipboard : Error description (error_no.)
Ext : + – . # $ %

42 GOSSEN METRAWATT GMBH

ErrChan 1: COM2 communications error
ErrChan 2: Unknown device
ErrChan 3: Self-test error
ErrChan 4: Calibration error
ErrChan 5: Authentication error
ErrChan 6: Off-line
ErrChan 7:
ErrChan 8:
ErrChan 9: Broken sensor
ErrChan 10: Phase failure
ErrChan 11: Phase sequence error
ErrChan 12: Overflow
ErrChan 13:
ErrChan 14:
ErrChan 15:
ErrChan 16: Broken 4 – 20 mA wire
ErrChan 17: Upper limit value alarm 1
ErrChan 18: Lower limit value alarm 1
ErrChan 19: Upper limit value alarm 2
ErrChan 20: Lower limit value alarm 2
ErrChan 21:
ErrChan 22:
ErrChan 23:
ErrChan 24: In service
ErrChan 25: Parameter configuration error
ErrChan 26: Calibration prompt
ErrChan 27:
ErrChan 28:
ErrChan 29:
ErrChan 30:
ErrChan 31:
ErrChan 32:

EDAY, EMON, EYEAR,
EMAX
PDAY, PMON, PYEAR,
PMAX

EDAY EMON EYEAR EMAX PDAY PMON PYEAR PMAX

At interval: per Day per Month per Year

Energy (see Eint) Eday Emon Eyear
Mean Power (see Pint) Eday Emon Eyear

Energy Maxima Emax (10 hr.) EmDay EmMon EmYear
Mean Power Pmax (10 hr.) EmDay EmMon EmYear

List Length variable
10 +

current
day

12 +
current
month

2 + current
year

Query : Eday <enumerationChannel> [<enumerationIndex>]
[=<newValue>]

Stack : – >>> <value
>

(in the case of enumerations,
<value> = sum (individual
values))

Ext : + – . # / * _ | $ %

GOSSEN METRAWATT GMBH 43

– <enumerationIndex> = 0 or no entry: current cycle
– <newValue> = 0 � time data are also deleted

(FROM = 0, TO = 0)
– EMAX <. .> <index> = 0 � delete as of <index> to

<maxIndex> (EMAX only)
– Variable start of day / month / year: TAGBEG MONBEG

EXIT, RETURNEXIT RETURN

FDIRFDIR : Display File Directory (as of Dec. 2001)

Query: FDIR // complete information
FDIR# // file names only
FIDR## // complete information, compact display

FREADFREAD (FR) : Read From File (record oriented)

– <fname> is the file name (e.g. "E.S" for total energy file)
– Read-out is rendered in hex format, and 256 bytes are represented as

512 characters (character set: 0..9,A..F). The read-out format is selected
with ext.'.'.

– Read-out is highly time-optimized, and speed is not reduced significantly
even if several stations are accessed within the ECS LAN.

FLISTFLIST (FL) : Read From a Text Oriented File (as of Dec. 2001)

Query: FLIST <fname> [<index> [<number>]]

EXIT : Premature ending of current program
Query : EXIT

RETURN : Premature ending of current sub-program only
RET : Abbreviation for RETURN
Query : RETURN

Query : FREAD <fname> <index> [<number>]
FREAD <fname> <index> [<number>]

[<timeORdate>] [<number>]
Output : yes
Stack : – >>> <startTime> <index>

Ext : + - # . % & /
. : Use binary encoding
| : Use next newest record relative to the specified

record.
_ : Suppress current record
$: Read out with checksum (as of Dec. 2001)
@ : <timeNumber> is used instead of <index>

44 GOSSEN METRAWATT GMBH

FSIZE FSIZE (FSxxx) : Set File Size

– <fname> is the file name (e.g. "E.S" for total energy file)
– FType (file type)

0: active file (with ActRecord)
1: static file

– FNum (file number) is the internally used file number.
– Command abbreviation: fsize E.S B == fsb e.s
– Either the above mentioned abbreviation or the complete designation can

be used for <mode>.
– FROM and TO times are set accordingly.

FORI NEXTI,
FORJ NEXTJ,
FORK NEXTK

FORI I NEXTI (NI) FORJ J NEXTJ (NJ) FORK K NEXTK (NK) :
Program Loops

FORI has numeric variable I, FORJ has J, and FORK has K (U1600: n.a.).

Note☞ The loop is executed at least once. At the end of the loop (NEXTI or
end of the line) I is increased by 1, or is set to the next
enumeration element. When no more elements remain in the
enumeration, or where: I > <to>, the loop is no longer executed.
The numeric variables are always available and can be set to a
specific value (e.g. I = 15), however, a "FORI <enumeration>
loop" CANNOT be effected with an assignment for I.
Each sub-program has its own FORI / FORJ / FORK set.
If no more commands are issued after NEXTI, NEXTI can be
omitted.

Query : FSIZE <fname> <mode>
FS<mode> <fname>

Output : yes
Stack : – >>> <value>
Ext : + – # . % &

<mode> <value> = quantity in <mode> <value> =
B Bytes MB MaxBytes

R Records MR MaxRecords

P Percent RS RecordSize

S Seconds FI FirstIndex

D Days LI LastIndex

FT FType (file type) FN FNum (file number)

Query : FORI FORI
<enumeration>

I NEXTI

Output : no no no no
Stack : <from>

<to> >>> –
– >>> – – >>> I – >>> –

GOSSEN METRAWATT GMBH 45

<enumeration> can encompass a range of 0 to 63 or 1 to 64.
FORI* : reversal of the sequential processing order

Examples
! Test:, 2,5, FORI, i, !+ " " ., nexti � Test: 2 3 4 5
! Test:, FORI 2..5, i, !+ " " . � Test: 2 3 4 5
! Test:, FORI 2..5, i, !+ " %ai" � Test: 2 3 4 5
! Test:, FORI* 2..5, i, !+ " %ai" � Test: 5 4 3 2

FORMATFORMAT : Formatting the Data Logger (queries data with EINT)

– The formatting process organizes the memory for a certain number of
interval data channels, although the total depth of memory is dynamically
related to the length of the synchronizing interval. If memory is full, data
is rotated, i.e. the oldest entry is deleted to make room for the newest.

– Reformatting of the data logger (with delete) only occurs if an
<enumeration> is assigned to the FORMAT command. If no assignment
has been made, FORMAT reads out current formatting, and the number
of storable channels is pushed to the stack.

– Any enumeration is possible (even with virtual channels).
– Entries to the data list (except for the current values) are compressed to a

2 byte value at the expense of accuracy. The data range can be flexibly
encoded as of ECSys V1.60, in order to adapt the working range in an
ideal fashion (see below).
Attention: Older ECS versions do not understand the new encoding
formats!

– The following applies upon delivery of the instrument:
FORMAT = 1 . . 64 0.

Query : FORMAT FORMAT@
Stack : – >>> <number_of_channels>

– >>> <encoding>
<number_of_channels>

Output : Formatting information (not for . and # ##), and list
of channels

Ext : + – . # ## @

Query : FORMAT = <enumeration>
Formatting according to
selected channel and current
encoding

Stack : – >>> –

Query : FORMAT = <enumeration> <encoding>
Formatting with predefined
encoding

Stack : – >>> –

46 GOSSEN METRAWATT GMBH

Encoding the Data Range: (0: default. resolution specified in [])
0 : 0...+/-0.8191[0.0001]...+/-81.91[0.01]....+/-8191[1]...+/-819100[100]
1 : 0....+/-8.191[0.001]....+/-81.91[0.01]...+/-819.1[0.1]...+/-8191[1]
2 : 0....+/-16383[1].......+/-163830[10]
3 : 0......+32767[1].........+327670[10]
4 : 0..+/-99999999 [8 decimal places, smallest place: 1E-6]

If the number is > 99999999, the leading places are omitted.
 1234567890 --> 34567890 omission of the first 2 places
 12345678.9 --> 12345679 8th place is 5/4 rounded
 1234567.8 --> 1234567.8 no restriction
 12.345678 --> 12.345678 no restriction
 12.3456789 --> 12.345679 8th place is 5/4 rounded
 1.23456789 --> 1.234568 only 6 places after decimal (see below)

Notes
– Encoding types 0, 1, 2 and 3 use two bytes per entry, but encoding type

4 uses 4 bytes per entry and memory duration is thus cut in half.
– Encoding type 4 is only available as of V2.46, and interval data encoded

per example 4 cannot be read out from stations with older firmware
versions!

– With encoding type 4 the smallest resolution is 1E-7, and resolution is
1E-6 with faster read-out using ext.'#' (the 6th place after the decimal is
5/4 rounded if required).

Testing Encoding

HH, MM, SS, DAY,
WDAY, MON, YEAR

HH MM SS DAY WDAY MON YEAR :Selective querying of time and
date, push result to the stack

Query : DLVAL <w> [<dlcode>] (U1600: l.a.)
Output : yes
Stack : – >>> <w compressed>

HH : Hour (0... 23)
MM : Minute (0... 59)
SS : Second (0... 59)
DAY : Day (1... 31)
WDAY : Weekday (1: Monday... 7: Sunday)
MON : Month (1... 12)
YEAR : Year (90... 99, 0... 20)
YEAR* : Year (1990... 1999, 2000... 2020)
Query : HH : basis = system time
Output : no
Stack : – >>> <hourNumber>
Ext : ! _

Query : HH . : basis = second number from
stack

Output : no
Stack : <secNumber> >>> <hourNumber>
Ext : ! _

GOSSEN METRAWATT GMBH 47

Meanings of Extensions:
– Ext. ‘!‘ forces a task:

A number is displayed for HH!, MM!, SS!, DAY!, YEAR!, for
WDAY! : name of day
MON! : name of month

– Ext. ‘_‘ accesses the operating hours counter instead of real-time when
queried without an argument (U1600: n.a.).

– Ext. ‘–‘ or "– –" : The number or response is saved to the clipboard and
no output ensues.

Time Reference
– All above listed commands used WITHOUT an argument make reference

to real-time for the station at which the command is physically interpreted
(as if ID AA: were always selected). See also ID and TIME. If time at a
given station is nevertheless to be used as a reference, proceed as
follows:

C5:time–,SS! .: reads out seconds (0 ... 59) for station C5:

Examples
– Other definition for weekday numbers (0: Sunday ... 6: Saturday):

WDAY,7,MOD, !
– Second count for current day:

TIME–,86400,MOD, !
– SS command "on foot" written:

TIME–,86400,MOD,60,MOD, !
– MM command "on foot" written:

TIME–,86400,MOD,3600,MOD,60,/,INT, !

H Programs,
HLIST, HBREAK

H Programs HLIST HBREAK

Query : H <enumeration> [=<characterString>]
Output : no (yes in case of listed exts. except '-' & '?')
Clipboard : <program> (except during execution)
Stack : - >>> - (except with ext. '?', see below.)
Ext. : + - . # $! % ?

– H without <index> == H 0, H1..H31 == H 1..H 31, H5! == H! 5
– No program execution occurs with extension.
– Maximum number of nested programs: 10 (U1600: 3) P programs,

maximum line length: 128

H0 . . H31 : Execute and/or program BACKGROUND programs

H0 ... H31 (U1600: H0 .. H19) are executed in the background one
after the other. Run time errors may be flagged with ERR. Output from
the background programs is always sent to COM1 at the station on
which the background program is running.
(Exception: output can also be rerouted to COM2 with the U1600 in
COM mode "COM+MIX" or the U1601 in COM mode "ECL+HP".)
Ext : + – . # $! % ?

48 GOSSEN METRAWATT GMBH

– H 19 is the "print program" and is activated at the control panel.
H 19 only runs in the background when activated and not at other times
(U1600 only!).

– H? pushes the number (0..31, -1:pause) of the current H program to the
stack. This function may only be executed within H programs.

– H?? pushes the following to the stack: 1= focus H program, 0= focus
command line. It can thus be determined whether or not a program is
executed as an H program.

Listing H Programs
HLIST : List all H programs, corresponds to: H! *
HLIST <enumeration> : corresponds to: H! <enumeration>
HLIST* : List all non-empty H programs (1600: l.a.)

– Copying H 7 to H 13:
h- 7,H 13=$
or
h7-,h13=$

– Copy all H’s to station B:
fori 0..31, i,h- ., i,B:h .=$

Interrupt H Programs
HBREAK Interruption and 16 s pause for background programs.
HBREAK+ : Same as HBREAK, but with 32 s pause
HBREAK++ : Same as HBREAK, but with 60 s pause
HBREAK- : Immediately end pause for H programs. (U1600: n.a.)

IF ELSE ENDIF IF ELSE ENDIF (EIF) : Program Branching

The IF command pops an element from the stack and rounds it to the next
whole number (5/4). If it is not equal to zero, all commands between IF and
ELSE are processed.
If it is equal to zero, the portion of the program between ELSE and ENDIF is
executed.

– Each sub-program may have up to four nesting levels.
– If there are no more commands after ELSE or ENDIF, ELSE / ENDIF can be

omitted.
– If the section between IF and ELSE is only to be executed once following

the occurrence of a true condition, use IFF (see IFF).
– See TIMECOMPARISON for the use of IF with time comparison.
– EIF is the abbreviated form for ENDIF

Example of "condition fulfilled":
1, IF, PRINT "This section is executed", ELSE, PRINT "but this is not"

Example of "condition NOT fulfilled":
0, IF, PRINT 'NO', ELSE , PRINT "YES", endif; PRINT "Yes/No-finished"

Query : IF ELSE ENDIF
Stack : <condition> >>> – – >>> – – >>> –

GOSSEN METRAWATT GMBH 49

IFFIFF ... ELSE ENDIF : Program Branching Commands for
One-Time Only Execution

The IFF command is used in cases where, unlike IF/ELSE/ENDIF, the section
between IF and ELSE or ELSE and ENDIF is only executed ONCE following
the occurrence of a true condition.
One permanent flag (IFF), and one volatile flag (IFF+) which is always
initialized after power on, are automatically managed internally for each
background program. Both flags are initialized for H programming. The IFF
and IFF+ commands can thus be used only once in an H program (including
its P sub-programs).

Example
If +24 V is applied to input 8, Etot is read out for channels 1 ... 4, and time
is read out once only when voltage has returned to 0 V.
H10 = ’IN– 8, IFF, Etot 1 . . 4, ELSE, time’

INDEXINDEX : Calculation of an Index for the Data List

Example
INDEX 17.03 12:15, eint##/ 1 . . 4 . *
– The validity of the INDEX number can be guaranteed for the command

following the INDEX command (in the same line), regardless of whether or
not an interval transition has occurred in the meantime (minimum validity
of 0.3 s).

– Interval limits during an EINT command do not jumble the data output.

Query : IFF ELSE ENDIF
Stack : <condition> >>> – – >>> – – >>> –
Ext : + : (IFF+ flag is always initialized after power on

IFF with time comparison:
see TIMECOMPARISON

Query : INDEX *
Stack : – >>> ’Index of the first entry in time’

Query : INDEX **
Stack : – >>> ’maximum possible number of entries’

Query : INDEX <as of date/as of time> [<as of time>]
Stack : – >>> ’Index for search time’
Ext : + : index for search time – 1 (prevents

overlapping)

// : "from" time is searched for instead of "to"
time

50 GOSSEN METRAWATT GMBH

INDIR INDIR : Checks if an ID is present in the directory (Dir).

– Ext ‘–‘ ignores the prompt station, as is also the case with ALL–
(U1600: n.a.).

Examples
• Once station G3 is in the ECS LAN, "G3 in Network" is displayed for 10 s

at all LCDs:
<A> H = ’G3:indir*, iff, all, meld “G3 in network“ 10’

• The ALL loop command is included for demonstration purposes:
’ALL, , NEXTA, ...’ corresponds to:
’1, 255, fori, i, indir ., if, i, an: , , endif, nexti, zz: , ...’

INPUT INPUT (IN) : Read in Input Status

INTERVAL INTERVAL (ITV) : Synchronizing Interval

Example
INTERVAL = 15 m or INTERVAL = 35 s
– Fractions of hours or minutes must be converted:

1 h 30 � 90 m or 5400 s. An attempt is always made to use the
largest unit of time for outpout.

– See also INTERVALSOURCE and SYNC.

Query : INDIR
Stack : <IDno.> >>> (1: <IDno.> in DIR /

0: not available

Query : INDIR >IDno.>
Stack : – >>> (1: <IDno. > in DIR / 0: not available

Query : INDIR *
Stack : – >>> (1: "current" ID in DIR / 0: not available)

Query : IN <enumeration>
Stack : – >>> (1: 24 V present, 0: 0 V present)
Ext : + – . # %

Query
or

:
:

INTERVAL [=<duration>] <duration>: 10 s ... 999 h
INTERVAL [=<number>_ _<unit>]

<unit>: s | m | h
Stack : – >>> <durationInSeconds>
Ext : + – . # | %

GOSSEN METRAWATT GMBH 51

INTERVALSOURCE,
TARIFFSOURCE

INTERVALSOURCE (IQ) TARIFFSOURCE (TQ)

Examples
Tariff from channel 7: TARIFFsource = 7
Time dependent interval: IS = Z

CHANNEL,
LONGNAME

CHANNEL LONGNAME

CHANNEL (CHAN) : The name of the channel (max. 8 characters)
LONGNAME (LNAME) : The full name of the channel (max. 20 characters)

Available Characters
– All ASCII characters can be used, except for control characters and the

following: ‘ , ‘ ‘ , ‘ <blank>
– ‘ , ‘ and ‘ , ‘ are transformed into ‘ _ ‘, a <blank> is interpreted as the

end of a string. The assignment CHANNEL <enumeration> = " $ "
does not assign the dollar sign to the channel name, but rather the
content of the clipboard.

– Channel names can be searched throughout the entire system with the
following restriction: the first character must be a letter.

– In order to assure that the channel names can be used for the dBASE
field identifiers, only ‘ _ ‘ may be used in addition to numbers and letters.
The first character must be a letter.

INTERVALSOURCE (IS) : Source used for generating the
synchronizing interval

TARIFFSOURCE (TS) : Source used for generating current tariff
T1 or T2

Query : IntervalSource [=<source>]
Output : yes
Stack : – >>> <sourceNumber>
Ext : + – . # $ %

<source> == <sourceNumber>

INTERVAL 1 . . 12 (input) 1 . . 12 (U1600: 1 ... 24)
Z | Time 99
P | Program 100

TARIFF 1 . . 12 (input) 1 . . 12 (U1600: 1 ... 24)
P | Program 100

Query : CHANNEL <enumeration> [=<character_string>]
Output : yes
Clipboard : <name>
Stack : – >>> –
Ext : + – . # $ %

52 GOSSEN METRAWATT GMBH

ID ID : ID as Number on the Stack (set ID: SETID)

– ID to ID number relationship:
A : 1, A1 : 2, ... B : 11, C : 21, ... Z4 : 255

– Transformation of an ID � ID number:
<ID>:ID#

– Transformation of an ID number � ID:
ID! <IDnumber>

Example
z4:ID, ! ID! 21 ID. 21 ID# 21
255 C: C 21
Influence of Extension ’&’ on General Command Output:

CMODE CMODE : Channel Mode

Query : ID [<IDnumber>]
without <IDnumber>: current ID

Stack : – >>> <IDnumber>
A: 1, A1: 2, ..., B: 11, C: 21, ... , Z4: 255

Ext : ! + . # %

& : Output ID at start of line
[Etot& 1 � A: Etot ...]

&# : <ID>:<val1>
&#. : <ID>:<val1>
&. : <ID>:<val1a>;<val1b>; ...
&& : Output ID at start of line and before each output block

&&## : <ID>:<val1>;<ID>:<val2>; ...
&&##. : <ID>;<val1>;<ID>;<val2>; ...
&&.. : <ID>;<val1a>;<val1b>;

..;<ID>;<val2a>;<val2b>; ..

Query : CMODE <enumeration> [=<channelMode>]
Output : yes
Stack : – >>> –
Ext : + – . # $ % ?

<chanMode> possible channels
U1601 U1602 U1603

0 : OFF OFF 1 ... 64 1 ... 64 1 ... 64

1 : ANA Analog I/O (ANA) 1 ... 14 — 1 ... 6+
13+14

2 : P->E PMOM=ANA
��ENERGY

1 ... 12 — 1 ... 6

3 : COUN ANA PULSES�
ENERGY/PMOM

1 ... 12 — 1 ... 6

4 : LON LON meter
� ENERGY / PMOM 1 ... 64 1 ... 64 1 ... 64

5 : LON LON analog I/O
(LONANA) 1 ... 64 1 ... 64 1 ... 64

GOSSEN METRAWATT GMBH 53

– CMODE corresponds to the command ANAMODE for analog channels.
ANAMODE**: Mode for all analog channels (U1601/2/3: 1..14)
CMODE**: Mode for all channels (U1601: 1..64)

– LISTCMODE reads out a list of all available assignments.
– CMODE is not available for U1600/10/15 (use ANAMODE for U1615).

The '?' ext. suppresses the "syntax error" and "function not available"
messages.

COSTFAC1,
COSTFAC2, TFIX

COSTFAC1 COSTFAC2 TFIX

ERACHANNEL,
ERALIST

ERACHANNEL (ERACHAN) ERALIST (ERALIS)

6 : L-PE Same as LONA plus
LONANA � ENERGY 1 ... 64 1 ... 64 1 ... 64

7 : LonI LON binary inputs 1 ... 64 1 ... 64 1 ... 64
8 : LonR LON relay 1 ... 64 1 ... 64 1 ... 64

COSTFAC1,
COSTFAC2

: Cost factors for tariffs 1 + 2

Query : COSTFAC1 [=<factor>]
Stack : – >>> <factor>
Ext : + – . # %

TFIX : Fixed decimal costs
Query : TFIX [=<fix>]
Stack : – >>> <fix>
Ext : + – . #

ERACHANNEL
(ERACHAN)

: Delete all measurement data for a given channel
(except for values in the data logger)

Query : ERACHANNEL =<channelEnumeration>

ERALIST
(ERALIS)

: Clear interval data logger starting with index.

Query : ERALIST = <fromIndex> : erase including
<fromIndex> ...
end

ERALIST = * : entire list

54 GOSSEN METRAWATT GMBH

LON-Specific
Commands

LON-Specific Commands (always begin with Lon...)

LON MEASUREMENT DATA:
LonCR <k> : Reading from the LON meter
LonE <k> : LON channel energy, corresponds to LonCR
LonP <k> : Instantaneous power at the LON channel
LonANA <k> : Optional analog value at the LON channel

LON PARAMETERS
LonCHANnel <k> [=<w>]: Sub-channel selection for the LON channel
LonFACTOR <k> [=<w>] : Optional evaluation factor [LonFACTOR]
LonOFFSET <k> [=<w>] : Optional evaluation offset
LonSTOP <k> [=<w>] : Activity at LON channel; <w>: 1=stop, 0=run
LonPOLLDELay [=<w>] : Polling delay [ms]; <w> : 0...32767 (default=0)
LonSTATTIMing [=<w>] : Station timing code; <w> : 0...15 (default=9)
LonSUBNODE [=<s_n>] : Read and write SUBNET and NODE addresses

 in the form <s_n> : SxxxNyyy
 xxx : SUBNET address (1 ... 255)
 yyy : NODE address (1 ... 127)
 Example: LonSUBNODE = S22N003

LON RELAYS and INPUTS
LonRel <k> [<bit>] [= <w>] : Address LON relays
LonInp <k> [<bit>] [= <w>] : Address LON inputs (binary)

LON GENERAL (query only)
LonVER : U1601 LON EPROM version
LonUSERS : Number of active LON users
LonUSE <k> : 1=LON channel active (run), 0=not active
LonUSE* <k> : 1=LON channel active (run or stop), 0=not
active
LonTYPe <k> : LON channel device type
LonMAXCHANnel <k> : Number of available sub-channels;

where LonUSE==0, 16 is read out.
[LonMAXCHANnel]

LonSHOWCR <k> : 1=LonCR plausible+display,
0=LonCR not plausible+display.
[LonSHOWCR]

LonNEW <k> : Install new LON channel
LonRESET = 0 : Complete new LON installation

Notes
– All LON commands start with Lon... followed by a maximum of 9 letters.

The upper case letters must be used, but the lower case letters AT THE
END of the commands can be omitted.

– English or German commands can be used, regardless of the selected
user interface language.

– If a communications error should occur at a LON node, the above
mentioned LON MEASUREMENT DATA are set to zero after the 6th
unsuccessful communications attempt.

– When relays or inputs are addressed, access is possible bit by bit (with
specification of the <bit> parameter), or for the entire word.
<bit> : bit number with 1 = LSBit, 32 = MSBit
Example: Relays 1 through 4 are activated with a command, and the 2nd
relay is deactivated later (LON relay module: channel 36)
LonREL 36 = whether 1111 or LonR 36 = 15
LonREL 36 2 = 0

GOSSEN METRAWATT GMBH 55

Syntax Description of Several Typical LON Commands

LonID : Query/enter LON NeuronID of the LON node
Query : LONID <channel> [=<lon_id>]
Output : yes
Clipboard : <lon_id>
Stack : – >>> –
Ext. : + – # . % ?

– <lon_id> : 12 digit hexadecimal numeric string
Example : LONID 1 = 01002a201F00

LonSTOP : LON Channel Activity (run or stopped)
Query : LONSTOP<channel>[=<value>]
Output : yes
Stack : – >>> <value> <value> : 0=run,
1=stopped
Ext. : + – # . % ?

LonCR : Reading from the LON Meter
Query : LONCR<channel>
Output : yes
Stack : – >>> <value>
Ext. : + – # . % ?

MELD MELD2MELD MELD2

Example
MELD “! faulty motor !“ �„! faulty motor !“

„****************“

Example
2,1,MELD2 “%!. line“ “%!. line“ � “1st line “

 “2nd line “
– <length_in_secs> == 99: unlimited waiting time.
– If an empty string "" is entered at MELD2, the corresponding display line

remains unchanged (except with extension *).
– Ext – copies the message to the clipboard.

MELD : Displays a message at the LCD for a defined duration.
A time duration can be specified by entering a
parameter value which indicates how long the
message will be displayed after the cause of the
message no longer exists. In this way, even short-
term error messages can be reliably viewed. The
message is cleared from the display by pressing a key
at the control panel.

Query : MELD <string> [<length_in_secs>] (max. 60 s,
default = 5 s)

Stack : – >>> –

MELD2 : Displays a TWO line message at the LCD for a defined
duration. The display is cleared as soon as any key is
pressed at the control panel.

Query : MELD2 <characterString> [<characterString> <length_in_secs>]
Stack : – >>> –

56 GOSSEN METRAWATT GMBH

MENUAPP,
MENUAPPN

MENUAPP MENUAPPN : Defining Menu Applications

The designation of a menu application is defined with MENUAPPN, and a
P program is assigned to a menu application with MENUAPP. Menu
applications are executed by the background program task between H
programs.

– 3 times 5 applications are available.
Range of <menuapp enum>:
Applications (1) : 1 . . 5
Applications (2) : 6 . . 10
Applications (3) : 11 . . 15

– <p prog number> is the number of the assigned P program (0 . . 31).
If no action is initialized, –1 must be assigned.

– <app designation> may not exceed a length of 10 characters, and
blanks, ‘,‘ and ‘;‘ may not be used.

– U1600/10/15: MENUAPP/MENUAPPN are not available. Background
program H 19 is used as a so-called print output.

MENUEDIT MENUEDIT : Allows for editing in menu applications (U1600: n.a.)

Query: MENUEDIT <mode> <n> = <title> [<lower value> [<upper value>]]
Output: no <mode> : Variable A | a | B | b
Stack: – >>> – <n> : Index of Var. A or B
Ext. : @ <title> : Title string (max. 16 char.)

<lower value> : Lower numeric value
<upper value> : Upper numeric value

– Ext. '@' allows for the rejection of zero values.
– Editing is only possible when the application menu is open, which means

that 100 must always be added to the MenuApp program number.
– Example: A 14 contains a value for limit value alarm 1, and A 15 contains

the value for alarm 2. A14 and A15 can now be edited with F4 and F5 in
the 1st application menu under consideration of certain upper and lower
values.

MENUAPP

Query : MENUAPP <menuapp enum>
[= <p prog number>]

Output : yes
Stack : – >>> –

MENUAPPN

Query : MENUAPPN <menuapp enum>
[= <app designation>

Output : yes
Clipboard : <app designation>
Stack : – >>> –

GOSSEN METRAWATT GMBH 57

MenuApp 04 = 114
MenuApp 05 = 115
MenuAppN 04 = 'Alarm 1'
MenuAppN 05 = 'Alarm 2'
P 14 = 'MenuEdit a 14 = "Alarm 1 [1..40]" 1 40'
P 15 = 'MenuEdit a 15 = "Alarm 2 [1..50]" 1 50'

FEATURESFEATURES: Query all Features

Query : FEATURE <name> [= <value> [<enable>]]
 FEATURES Query all enabled features (<value> != 0)
 FEATURES * Query all available features

Output : yes
Clipboard : <name> FEATURES : <last_name>
Stack : – >>> <value>FEATURES : - >>> <sum_all_values>
Ext. : + – & $ # .

– The availability of features depends upon the device type. Each feature
has a give <value> range. If a feature is deactivated, its <value> is
always equal to 0. Under normal circumstances, device features are set
in accordance with customer requirements when the device is
purchased. Nevertheless, some features can be modified by the user
(<value> not equal to 0), and some can be fully configured (<value> :
0,1,2,..).

– If an <enabling> code is required, temporary disabling may occur if an
incorrect code is entered several times.

MONBEGMONBEG : Variable Beginning of Month / Year

Each month can start on any day, each year can start with any month. The
variable mode is active after any assignment is made. The beginning of a
day can be selected with DAYBEG.

– The optional entry of <toYear> allows for simultaneous processing of
several years (U1600: n.a.).

MONBEG@ = 0 : return to normal operation (always start on the first).
MONBEG@@ = 0 : return to normal operation, reset entries.
MONBEG@ = 1 : variable mode with previous entries.
MONBEG@ : – >>> <state> <state> : 0 = normal, 1 = variable
mode

Examples
(if <year> is omitted the current year is used)
MONBEG 1..12 = 17: months 1 ... 12 begin on the 17th of the month.
MONBEG 0 = 10: the year starts in October (here: 17.10.)
MONBEG 0 1995 = 2: 1995 starts in February

Query : MONBEG <monthEnumeration> [<year>]
[=<startDay>]

Stack : – >>> <startDay>
<year> : 90 ... 99, 0 ... 30

or 1990 ... 2030
Ext : – . # &

58 GOSSEN METRAWATT GMBH

NF4I, NF4M, NF8I,
NF8M, NFSTD

NF4I, NF4M, NF8I, NF8M, NFSTD : Output of REAL Numbers in 32
or 64 Bit IEEE HEX Format

Switching to the desired output format is valid for the rest of the line.

Global output format changes effect all numeric output for the rest of the line:
REAL value outputs: !, <command>% "%w", primary value outputs: Ext ‘#‘
– Output in the various IEEE HEX formats can be generated without

switching formats by using freely selectable formatting as follows:

Entry of REAL Numbers in 32 or 64 Bit IEEE HEX Format:

– The NF .. command is used for input and output of numbers in 32 or 64
bit IEEE format (the station works internally with these number formats).
The 4 or 8 bytes are displayed as 8 or 16 digit HEX numbers
(2 characters 0 . . 9+a . . f per byte), i.e. 32 bit floating numbers have 8
characters (4 byte, nf4i or nf4m), and 64 bit double numbers have 16
characters (8 byte, nf8i or nf8m).

– Read-outs with NF . . are significantly faster than standard read-outs with
several decimal places.

– MOTOROLA byte ordering (nf4m or nf8m) starts at the left with the MSBit,
and ends with the LSBit at the right:

Example

NF4I : Output of REAL numbers (4 byte FLOAT) in
32 bit IEEE HEX format
INTEL byte ordering, 8 HEX characters

NF4M : Output of REAL numbers (4 byte FLOAT) in
32 bit IEEE HEX format
MOTOROLA byte ordering, 8 HEX characters

NF8I : Output of REAL numbers (8 byte DOUBLE) in 64
bit IEEE HEX format
INTEL byte ordering, 16 HEX characters

NF8M : Output of REAL numbers (8 byte DOUBLE) in 64
bit IEEE HEX format
MOTOROLA byte ordering, 16 HEX characters

NFSTD : Reset to default output

<command>% "%4_ _ _w" : INTEL FLOAT HEX
<command>% "%8_ _ _w" : INTEL DOUBLE HEX
<command>% "%4_ _w" : MOTOROLA FLOAT HEX
<command>% "%8_ _w" : MOTOROLA DOUBLE HEX

Stack:
NF4I <float_hex_intel> : – >>> <real>
NF4M <float_hex_motorola> : – >>> <real>
NF8I <double_hex_intel> : – >>> <real>
NF8M <double_hex_motorola> : – >>> <real>

INTEL: B7 . . B0 B15 . . B8 B23 . . B16 B31 . . B24
MOTOROLA: B31 . . B24 B23 . . B16 B15 . . B8 B7 . . B0

nf4i, 12345678, ! � 4E613C4B (INTEL)
nf4i 4E613C4B, ! � 12345678
nf4m, 12345678, ! � 4B3C614E (MOTOROLA)
nf4m 4B3C614E, ! � 12345678

GOSSEN METRAWATT GMBH 59

PASSWORDPASSWORD : Secure Access to the Station via RS 232 / ECS LAN

One master user (user 1) and four additional users (2 ... 5) can each have
different passwords (numbers ranging from 1 to 999999999). The master
user sets access authority for the individual users. Each user may change
his own password, as long as the old password is known.
The master’s access authority is valid when no users are logged on, or if
timeout has expired. The master always has all rights (=5). Initially, all
passwords are set to 0. Only the master can change 0 passwords. To delete
all passwords: master password = 0.

Attention!!
Incorrect entries may result in temporary disabling!

<user> : 1=master=user–1, 2 ... 5=user–2 ... 5,
0=current user

<password> : 1 .. 999999999, 0:delete
<pw_old> : Old password or master password as authority
<pw_new> : New password (must be entered twice)
<rights> : Access authority, see below
<timeout> : in minutes 0=no timeout
<free> : 1=free (enabled) 0=not free (disabled)
<com_i> : COM access: 1=COM–1,

2=COM–2,
0=current access

LOGIN : Log in with a password
Query : LOGIN <user> <password>
Output : yes
Stack : – >>> –

LOGOUT : Log out
Query : LOGOUT
Output : no
Stack : – >>> –

WHOAMI : Query user number and access authority (Who am I)
Query : WHOAMI
Output : yes
Stack : – >>> –

60 GOSSEN METRAWATT GMBH

– If ‘ * ‘ is used for the read-out of lists, stack values make reference to the
first displayed element. Summation is not sensible in this case.

The PASSWORD also pushes <com_i> to the stack during read-out. If ext ’|’
is used. <com_i> is only defined for the current user (1:COM1, 2:COM2),
otherwise zero is pushed to the stack (U1600: n.a.).

Note☞
System-Wide Password Management
The PASSWORD command is system-wide, i.e. all access
authorities can be managed from a single station. However,
access disabling ONLY EFFECTS ACCESS VIA THE LOCAL RS 232.
When a user logs on, his access authority for the local station, as
well as all other stations within the ECS LAN, is determined by his
password (see below). The passwords, rights and timeouts of the
station at which the user logged on apply.
Care must thus be taken when passwords are issued to make
certain that the address context makes reference to the local
station (special ID AA:), when the PASSWORD command is
executed.
Use of the special ID AA:PASSWORD ... thus provides for
effective protection against side-effects.

Password : Set up station passwords and access authority

Query : PASSWORD <user> <pw_old> =
<pw_new> <pw_new> <rights>
<timeout>

PASSWORD <user> <pw_old> =
<pw_neu> <pw_new>

PASSWORD* <user> <pw_old> =
<rights> <timeout>

Stack : – >>> –
Query : PASSWORD � Read out current user

PASSWORD <user> � Read out authority
assigned to <user>

PASSWORD * � Read out authority
assigned to
<user> 1 .. 5

Stack : – >>> <timeout> <rights> <user>

PWLRELEASE: Enable specific ECL COM access rights
 (U1600: n.a.)
(PWLREL) From password protection (PasswordLockRelease)
Query : PWLRELEASE <com_i> <master_pw> = <free>
Query : PWLRELEASE <com_i>
Output : yes
Stack : – >>> <free>

PASSWORD |
Stack: – <com_i> <timeout> <rights> <user>

GOSSEN METRAWATT GMBH 61

Enabling Individual ECL Access:
– U1600/10/15 have only one ECL access port (COM1). The same

passwords and access authorities/timeouts are used for stations with
several ECL access ports, although the status of each access port is
entirely independent of the other(s). User 2 can thus log on to COM1, and
user 5 to COM2. If the current user is queried, the access port must be
specified. If no specification is made, the current access port applies (like
WHOAMI, except with stack output).

Control Panel Passwords
– Control panel passwords can also be changed with PASSWORD. The

following <user> numbers are used to this end. (U1600: n.a.):

Access authority and timeouts cannot be changed. The following applies, as
is also the case for ECL passwords: The master (user 1) can change all
control panel passwords, and the other users can only change their own
passwords. A control panel password is deleted by entering 0 or 111111. If
the master control panel password is deleted, the other control panel
passwords are still valid, although access protection is disabled.

Note☞
Control panel passwords are not identical to ECL passwords.
U1600/10/15 stations recognize only one control panel
password, which is addressed with <user> number 101 or 99.

Example (observe correct sequence!)
Master enters:

PASSWORD 1 0=123 123 0 5 : Master pw = 123,
timeout = 5 m, 0 user rights = 0

PASSWORD 2 123=222 222 3 10: user 2 pw = 222,
timeout = 10 m, rights = 3

PASSWORD* 2 123=2 5 : change rights = 2
and timeout = 5 m

User changes own password:
PASSWORD 2 222=2121 2121: change password

User logs on:
LOGIN 2 2121

Master deletes all passwords: PASSWORD 1 123=0 0

PASSWORD 0 <com_i> � Read out current user at <com_i>
PASSWORD 0 2 � Read out current user at COM2
PASSWORD 0 * � Read out current user at COM1+2

101 : user 1 (master)
102 .. 105 : user 2 ... user 5

Access
Authority Local ECS LAN Notation

Read Write Read Write
0 – – – – [– – L: – –]
1 yes – – – [r – L: – –]
2 yes – yes – [r – L: r –]
3 yes yes – – [r w L: – –]
4 yes yes yes – [r w L: r –]
5 yes yes yes yes [r w L: r w]

62 GOSSEN METRAWATT GMBH

PAUSE PAUSE (PP) : Pause in Seconds

The execution of the program is suspended for n seconds – fractions of
seconds may also be specified. The effective waiting time is always a
multiple of 100 ms.

Note☞
Maximum length of the pause = 20 s. Numbers with n > 20 are
regarded as milliseconds.
Example: ’Pause 2.2’ corresponds to ’Pause 2200’, program
execution is suspended for 2.2 seconds.

LEVEL LEVEL : Sets sensitivity at the meter inputs.

Switching threshold: 0=10%, 1=25% (default), 2=50%, 3=70% of
full range.

– The level setting applies to all meter inputs.
– Level recognition has an accuracy of 5% and an hysteresis of 1% of full

range.
– Other assignments apply to U1600 stations:

The maximum H input level (without hysteresis) can be set within a range
of approximately 3 V (Lo) and 5.5 V (Hi) (typical).

PFACTOR PFACTOR : Factor used in calculating power from energy per period

This factor can be used to adapt the time reference to the calculation of
power.
– Normally, the hourly reference is used (kWh to kW) : Pfactor = 3600
– Where reference to seconds is required (Ws to W) : Pfactor = 1
Formula for calculating power P from energy E and
time span dt: P = E * Pfactor/dt

Query : PAUSE or PAUSE <value>
Stack : <value> >>> – – >>> –

Query : LEVEL [=<value>]
Output : yes
Stack : – >>> <value> (only when reading)
Ext : + – % <value> : 0 (Lo) ... 3 (Hi),

default: 1

Query : PFACTOR <enumeration> [=<value>]
Stack : – >>> <value> (when reading)
Ext : + – # . %

GOSSEN METRAWATT GMBH 63

POWERFAILPOWERFAIL (PWR) : List of Auxiliary Power Interruptions (max. 32 entries)

– List of all interruptions : PWR *
(starting with the first power failure)

– Reverse order of output with ext ‘ * ‘ : PWR* *
– Erase, for example, as of index 7 : PWR 7=0
– FROM and TO for the last listed failure are always set (even without

extension " / ").
– Duration of last interruption [s] : PWR–,DUR, !
– Formatting : %w corresponds to the respective failure duration [s], and

%e to unit of measure " s " (U1600: n.a.).

POWERFAIL |POWERFAIL | : Like POWERFAIL, Total Failure Time � Stack (U1600: n.a.)

POWERFAIL@
(PWR@)

POWERFAIL@ : Indicates Interval <PowerON> . . <now> see also POWERON]

– Determination of ON-time [s] since PowerOn : PWR@– ,DUR, !

POWERONPOWERON (PWRO) :Operating Time since last PowerOn or Reset

– FROM and TO are always set (even without extension /).

Query : POWERFAIL <enumeration> [=0]
Output : yes
Stack : – >>> –
Ext : + – # . / * %

| @ (see below)

Query : POWERFAIL | <enumeration> [=0]
Output : yes
Stack : – >>> <sum_of_failure_times>
Ext : + – # . / * %

Query : POWERFAIL@
Output : yes
Stack : – >>> –
Ext : + – # . / | %

Query : POWERON
Stack : – >>> <time_in_seconds>
Ext : + – # . / $ %

64 GOSSEN METRAWATT GMBH

PRINT ! (PRINT) : Output Command

– The string to be printed out may contain formatting instructions similar to
those used in the printf() function in ’C’ language (see PRINTFORMAT).

– The following applies: Strings <par1> ... <par3> are interpreted
accordingly and are joined to one another uninterruptedly. Assignment
strings <zpar1> ... <zpar3> are added in an unchanged fashion, and
are joined to one another uninterruptedly as well.
Example:

! \065 \066 \067=\068 "F e r t i g" � ABC\068F e r t i g
– See PRINT examples for further examples.
– The entire read-out is additionally copied to the clipboard with Ext *

(max. 128 characters).
– Ext – [suppress read-out] diverts the entire read-out to the clipboard.
– Ext ? compares "case-INsensitive", and ext ?? "case-Sensitive".

PRINT Format PRINT Format

Output Format:(similar to format commands for printf() in ’C’

For further options see PRINTMODI, for examples see PRINT examples.
Some commands executed with ext. % format output according to the
format string (1st parameter).

! : Stack output function pops a number from the stack
and prints it out

! ... : Output function ! [<par> [__<par> [__<par>]]]
Example: fix 3,5,! “value = “ . “ Kg“
� value = 5.000 Kg

!$: Output clipboard
!? : String comparison (argument � clipboard)

Stack here: – >>> {1 | 0}: equivalent = 1,
different = 0

!_ : Output of a line containing 78 underlines ’_’
!! : Output function "one empty line"

command : Output
%! : Number (pop from stack)
%x %X : Number in HEX (pop from stack)
%$ %s : Clipboard
%c<Z> : times characters <Z>
%C : times characters (from stack)
%% : %

command

decimal places

output width (max. 99)

0 : leading zeros

– : flush left

% [–] [0] [<width>] [.<fix>] #

GOSSEN METRAWATT GMBH 65

In which case:

PRINT ModificationsPRINT Modifications

Stack Output / Manipulations in Output Formatting:

String Outputs:

– %@p %@h %@s %@$: The string is used as a format string
(1 nesting level)

– %$ with indication of fixed decimal (e.g. %.3$) : omit n from beginning
of string.

Indication of ID for %p %h %a b% :

The 2nd possibility is important for the following setup:

%g %G : Device ID, %g: letter ID ’A1’,
%G: ID number

%f : Function name (for Etot, i.e. ’Etot’)
%k : Channel number
%v %V : Channel number / code, fixed format:

(00), 01 ... 24, V1 ... V8
%i : Index (numeric), i.e. for Eday–3 = 3
%w : Primary value (numeric) of the command (i.e. for

Etot = energy)
%e : Unit string of the command
%n : Name string of the command (channel name)

%! : n >>> –; print n
%# : n >>> n; print n
%< %n< : DROP [<n = width>]
%> %n> : DUP [<n = width>]
%n^ : PICK
%~ : SWAP
%a0 %a63 : Content (A n) : possible for variables A(%a00)

and B(%b00)
%&ann : A nn push+print
%&&ann : A nn push only
%ai : Content (I) : possible for

I(%ai), J(%aj), K(%ak)

%$ %s : Read out clipboard content
%p00 %p19 : Content (P i)
%h00 %h19 : Content (H i)

%p<ID>:<num> ! %pc2:17 (content from C2:P 17) or
%p:<ID>:<num> ! %p:d:5 (content from D:P 5);

! "%ai3:15" � <content from i>3:15
! "%a:i3:15" � <content from I3:A15>

66 GOSSEN METRAWATT GMBH

Time Read-Outs:

– %DM, %DW require upper case for names. %dM, %%dW leave upper
and lower case unchanged.

– %:TT (‘:‘for strings) modifies output where timeNumber = 0 (U1600: l.a.)
– 0,! %ZZ � "00:00:00 01.01.90"
– 0,! %:ZZ �� "--:--:-- --.--.--"
– U1600 only: %p leaves content from p intact, %P converts content (see

STRINGS)
– U1600 only: leaves clipboard string intact, %s converts clipboard codes

(see STRINGS)

PRINT Examples:
• Output Stack Data

12, 34, ! “n1 = %04!, n2 = %.3!“� n1 = 0034, n2 = 12.000
1,2,3,4, ! “%3^%07.3! %>%!,%!“� 002.000 4,4

• Formatting an output command (channel v1 = furnace)
Etot% “%g:%f of %4n = %w %e“ V1 �

A:Etot from area = 1234.12 kWh
Etot% "%G:%f of %–4n = %.0w %e" V1�

1:Etot from furnace = 1234 kWh
• Time Output

! “Today is %///&dT, the %dt. of %dM %dJ“ �
Today is Monday, the 22nd of March, 1999.

• HEX Output
%x : 43981,! ’in Hex: %05x’ � in Hex: 0abcd
%X : 1997,! ’in Hex: %X’ � in HEX: 7CD

%z . . : Pop time number from stack, stack remains
(n >>> n)

%_z . . : Last point in time within the format (U1600: n.a.)
%/z . . : FROM point in time
%//z . . : TO point in time
%///z . . : Time
%& z : Push+print
%&& . . z : Push only
%zz %ZZ : Time$ / Time-Date$
%zh : Hour (0 . . 23)
%zm : Minute (0 . . 59)
%zs : Seconds (0 . . 59)
%dd %DD : Date$ / Date-Time$
%dt %dT : Day (number / string)
%dw : Weekday (1:Monday: . . . 7:Sunday)
%dW : Weekday (string)
%dm %dM : Month (number / string)
%dj : Year (90 . . 99, 0 . . 78)
%dJ : Year (1990 . . 2078)

GOSSEN METRAWATT GMBH 67

P Programs,
PLIST, DO, DOWHILE

P Programs PLIST DO DOWHILE

– P without <index> == P0,P1 . . P19 == P 1 . . P 19,P5! == P! 5
– No program execution occurs with extension.
– Maximum nesting levels = 3 (P[P[P]])
– During reading: <program � clipboard

(except for extension "– –" or execution).
– P@ or DO $ executes the content of the clipboard as if it were a

program.
– P? pushes the number (0 . . 31, –1:none) of the current P program to

the stack.
– The address context of a P program determines the origin of the program

text, but NOT the address context under which the individual program
commands are executed. The current line context applies in this case,
which can thus be changed by a P program. An example with ALL is
found under ID.

– I, J, K variables apply locally, i.e. a given program level has no access to
the I, J, K variables at the next lowest level.

– Unused P programs can be used as string memory.
– Q Programs Q0 to Q31 are available as of firmware version April 2001.
• Execute a P program with freely definable name: see REM
• List all Ps: P! * or PLIST
• Copy P7 to P13: P– 7, P 13=$ or P7–,P13=$
• Copy all Ps to station B: fori 0 . . 31, i,P– ., i,B:P .=$

– Entry of an address with DO has no effect.
– I, J, K variables apply locally, i.e. a given program level has no access to

the I, J, K variables at the next lowest level.

P0 . . P31 : Execute / program programs P0 ... P31
Q0 . . Q31 : Execute / Program programs Q0 ... Q31

 (U1600: n.a.).
Query : P <enumeration> [=<string>] max. line

length: 128
Ext : + – . # $! ? @ No execution during output

PLIST or PLIST <enumeration> : lists P programs
(corresponds to P! *)

PLIST* : Lists all P programs which are not empty
(U1600: n.a.)

DO : Execute a program string (U1600: n.a.)
Query : DO <program>
Output : no
Stack : – >>> –

68 GOSSEN METRAWATT GMBH

– A number is popped from the stack and is rounded up to the next whole
number (5/4). If this number is not equal to zero, the <program> is
executed. After execution, another number is popped from the stack and
the procedure is repeated until the number is equal to zero.

– Entry of an address with DOWHILE has no effect.
– I, J, K variables apply locally, i.e. a given program level has no access to

the I, J, K variables at the next lowest level.

Example
Countdown from 10 to 1:
10, dup, dowhile ‘! "still ,1,–,dup‘

RELAY, S0RELAY,
RELAYMODE

RELAY SORELAY RELAYMODE

– Ext * always suppresses the optional relay name
(see RELAYNAME).

– Ext @ with REL (REL@ <enumeration>) indicates actual relay status
taking RELAYMODE overrides into consideration.

DOWHILE
(DOWH)

: Execution of a program string, as long as a condition
is fulfilled (U1600: n.a.)

Query : DO <program>
Output : no
Stack : <condition> >>> –

RELAY (REL) : 4 outputs switched with relays (changeover
contacts) 1 ... 4 are available.
’1’: relay active, ’0’: relay inactive

Query : REL <enumeration> [={1 | 0}]
Output : yes
Stack : – >>> {1 | 0} (when reading)
Ext : + – . # * $ % @

SORELAY
(SOREL) : S0 relay (semiconductor relay) output switching

(U1600: l.a.)
Query : S0REL <enumeration> [={1 | 0}]
Output : yes
Stack : – >>> {1 | 0} (when reading)
Ext : + – . # * $ % @

RELAYMODE
(RELM)

: Select operating mode for relay outputs:
0: Relay always OFF
1: Relay always ON
2: Relay controlled with program (default setting)

Query : RELM <enumeration> [=<mode>]
Output : yes
Stack : – >>> <mode> (when reading)
Ext : + – . # * %

GOSSEN METRAWATT GMBH 69

– The name of a relay can be indicated instead of the <enumeration> (see
RELAYNAME, FINDER). S0RELAY then functions as RELAY.

– The stations are equipped as follows:
U1600 : 4 relay outputs (changeover contacts) REL 1 . . 4
U1601 : 2 relay outputs (changeover contacts) REL 1 . . 2,

4 semiconductor relay outputs (normally open) REL 3 . . 6
(S1 <– –> REL 3, S2 <– –> REL 4,
S3 <– –> REL 5, S4 <– –> REL 6)

– U1615 : max. 7 relay outputs (normally open) REL 1 . . 7
(see ANARELMAP)

– Semiconductor relay outputs (if present) can be controlled directly with
S0REL. For the U1601: S0REL 1 corresponds to REL 3. For instruments
without dedicated S0 relays: S0REL 1 corresponds to REL 1. Mode and
name settings must be selected via RELAYMODE / RELAYNAME, and the
relay number must be corrected accordingly.

– The following appears at the STATUS display:
’p’ : OFF per program ’P’ : ON per program
’_’ : always OFF (mode 0) ’+’ : always ON (mode 1)
‘–‘ : OFF ‘*‘ ‘*‘ : ON

S0PxxxxS0Pxxxx Commands for Pulse Output to S0 Relays:(as of March 2002)

// <s0rel> : 1..4
S0PCH <s0rel> [=<chan>]// Etot channel as basis (0=off, 1..64)
S0PDElta <s0rel> [=<delta>]// deltaE per pulse (0=off) corresponding to

// the unit for <chan>
S0PMS <s0rel> [=<pulse_duration_ms>]// pulse duration in ms (0..1000)

// values < 20 ms � 20 ms
// minimum cycle duration = 2 * S0PMS

S0PULSe <s0rel> [<cycle_duration_ms>] = <number_of_pulses>
// output of <number_of_pulses> pulses with
// corresponding cycle duration independent
// of S0PCH and/or S0PDElta
// values. S0PMS is considered.
// <cycle_duration_ms> : not specified
// or < 20 ms � 2 * S0PMS

– Lower case letters in command names are optional. S0PULS and
S0PULSE are thus both valid names for the same command.

– An Etot comparison register is maintained internally which can be read
with the S0PETOT <s0rel> command used for test purposes. If an
energy difference occurs which is equivalent to more than 250 pulses,
the difference is zeroed out (S0PETOT=ETOT) and no pulses are read out.
Otherwise, the number of pulses to be read out is calculated based upon
the energy difference and the Etot comparison register S0PETOT is
adapted accordingly.
Number of pulses = Int (ETOT-S0PETOT / S0PDElta)
Comparison is performed several times per second.

– Observe the following:
S0PDELTA is reciprocal to MCONST (where: EUnit = kWh, URAT = IRAT = 1)
MCONST: <mconst> pulses per kWh
S0PDELTA: <s0pdelta> kWh per pulse

70 GOSSEN METRAWATT GMBH

– S0PDElta may also be negative, and can thus react to negative
differences, for example in order to monitor export instead of import.

– Power information from the pulse output:
Information regarding power can be derived from the pulse output by
means of a special process. If more than one pulse is to be read out, no
pulse trains are read out. Instead, the pulse interval is calculated based
upon the difference generated for current PMOM (pulse trains are
nevertheless generated for channels where PMOM = 0).
If sudden delta peaks are detected, the current pulse interval is shortened
accordingly so that quick adjustment to the new PMOM situation can
ensue.
If one or two pulses are to be read out after the performance of a
comparison, and if pulses still need to be read out for the last comparison
(total of n pulses), these n pulses are uniformly distributed over a period
of 10 s, in which case the following applies: n * cycle duration > 10 s
(cycle duration calculated from greatest PMOM of all accumulated
pulses). The accuracy of power determined based upon pulse interval
depends upon several factors: pulse output frequency, channel mode
(meter pulses, P�E conversion), interval for any linked DVIRT generation
(cycle time of the H programs) etc. Although power is calculated as
accurately as possible, the power value should only be used as an
estimate, but the energy value is (nearly) error-free (64 bit double
calculation accuracy, time delay and pulse losses may result from
auxiliary power failures).

– Default values: S0PCH 1..4 = 0, S0PDE 1..4=0, S0PMS 1..4=0,
S0PETOT 1..4=0

– Example: Channel 1 counts pulses at 1 pulse per kWh. ETOT from
channel 1 serves as a basis for pulse output at S0 relay 1 (1 kWh per
pulse). This is fed to channel 2 via the 24 V output. Register contents
from registers not mentioned here correspond to the default values.

CMODE 1+2 = 3 P�E, MCONST 1+2 = 1, PULSE 1+2 = 10 ms
S0PCH 1 = 1, S0PDELTA = 1 kWh, S0PMS = 20 ms

Set to start-up status (for test purposes only!):
StartStop 1+2 = 0, ETOT 1+2 = 0, S0PETOT 1 = 0, StartStop 1+2 = 1

All meter pulses at channel 1 are now read out via S0 relay 1, and are
counted by channel 2 (max. frequency 25 Hz). PMOM measured by
channel 2 corresponds to PMOM at channel 1 within the framework
described above.

RELAYNAME RELAYNAME (RELN) : Name of a Relay

A name can be assigned to each relay for improved identification.

– Max. length of <name> = 8 characters
– The relay name is very useful for searches (see FINDER).
– Delete an unused name: RELN 2 = ““

Query : RELN <enumeration> [=<name>]
Stack : – >>> –
Ext : + – . # %

GOSSEN METRAWATT GMBH 71

REMREM / @ : Insert a Remark

Example
REM "Mean Value Program"
@ determines upper value
REM one two three (one string per <par>)
– Disregard a Program Line

If a line starts with '#', the line is entirely ignored.
H programs can be deactivated very easily in this way, without deleting
any content.

– Execute a P Program with a User Definable Name
If the first command in a P program is a special remark
"@@ prog_name", this program may be executed by simply typing
prog_name instead of P n, even if the program is located elsewhere in
the ECS LAN.

Example
P 10 = '@@ Hello, ! "Hello, how are you?"'
Query: hello Output: Hello, how are you?

LPSEARCH : Limited P search, restriction of the system-wide program
search (as of Dec. 2001)

Query:
LPSEARCH = 0 Searches first at the station with the current address, and

then at all other stations within the LAN (starting with
A:..Z4:) DEFAULT.

LPSEARCH = 1 Searches first at the station with the current address, then
at the prompt station (ZZ:), and finally at the RS 232
station (AA:).

Output: yes
Stack: – >>> <lpsearch>
Restriction of system-wide program searches (LPSEARCH = 1) is very useful
in large networks, because incorrectly written commands would otherwise
result in long waiting times.

SET...SET... : Sets the Interfaces

Setting COM, LAN and LON interfaces:
SETCOM1 [= <param> [<dly]] // COM 1 serial interface
SETCOM2 [= <param> [<dly]] // COM 2 serial interface
SETLANL [= <param> [<dly]] // ECS LAN LEFT
SETLANR [= <param> [<dly]] // ECS LAN RIGHT
SETLON [= <param>] // LON network (if available)
SETCOMS // read out all interface settings

Output : yes
Clipboard : Parameter string
Stack : – >>> –
Ext : & + - # % $?

72 GOSSEN METRAWATT GMBH

– Settings can only be selected via ECL as of firmware version 16 May
1999.

– Settings must be selected very carefully, because irreversible errors may
occur if incorrect settings are used with groups of linked devices. It may
only be possible to eliminate errors of this type by dispatching on-site
personnel.

– In order to assure that ECS LAN and COM settings can be selected
without obstructing the current command, a delay <dly> can be specified
in seconds (0.3s .. 25.5 s, values smaller than 0.3 --> 0.3 s). SETLON
never utilizes a delay (even if <dly> is selected).

– <param> is the parameter string, which may not include any blanks. No
differentiation is made between upper and lower case letters. Parameter
settings can be entered fully, or only in part. Entries in parentheses are
alternatively valid.

SETCOM1, SETCOM2: mode/baudrate/parity/handshake
mode : OFF, ECL, ECL+HP, DCF77(DCF)
baudrate : 110, 150, 300, 1200, 2400, 4800(4k), 9600(9k),

19200(19k), 38400(38k), 57600(57k), 76800(76k),
115200(115k)

parity : P-, EVEN(PE), ODD(PO)
handshake : XON(XOFF), RTS(CTS)

SETLANL, SETLANR: mode/baudrate
mode : 2D(2W), 2D+(2W+), 4D(4W)
baudrate : 15600(15K6), 31200(31K2),62500(62K5), 125000(125K),

375000(375K)

SETLON: mode
mode : OPEN(O)(-), RA50(RT50)(50), RA100(RT100)(100)

Examples
• Set COM1 to default settings (ECL/9600/P-/XON):

SETCOM1 = DEFAULT
• Change baud rate to 115200 baud:

SETCOM1 = 115k
• Change parity and handshake (PE/RTS)

SETCOM1 = PE/RTS
• ECS LAN: Change the baud rate of a line-to-line connection (stations

D:(LAN/R) and E:(LAN/L) are connected, 2-wire or 4-wire). The
connection functions flawlessly at 62 kBaud, and the baud rate is now to
be increased to 125 kBaud. You have access to both stations via the ECS
LAN (via D:LAN/L). In order to assure that connection to E: is not
disrupted, selection of the setting is delayed by 2 seconds.
D:SETLANR = 125k 2, E:SETLANL = 125k 2
The settings become valid 2 s after this line has been executed. There is
no doubt that the commands will reach both stations and that they will be
acknowledged within this period of time. Now test network performance
with SYSTEST.

GOSSEN METRAWATT GMBH 73

SETIDsetID : ID Setting

Example:
setID = U1:

SUWISUWI : Support for Switching to Daylight Savings Time (Summer � Winter)

May only be used in a single H program.
Switching only takes place if the corresponding station is active at the time
the shift to or from daylight savings occurs.
If no parameters are entered, March and October are used for switching,
which always occurs on the last Sunday of the month at 2h/3h.
An internal flag prevents multiple switching.

Example
H31 = ’SUWI, IF, TIME–, +, TIME=.’
or for all stations:
H31 = ’SUWI, IF, TIME–, +, TIME=., ALL–, TIME = x:x:x’
In the last case, NO other time switching H programs may run at other
stations!
Specification of month parameters as of V2.46

STATION, GROUPSTATION GROUP

– When reading: <name> � clipboard
(except with ext "– –")

– Max. length of <name> = 8 characters.
– See CHANNEL for usable characters.

Query : setID = {A, A1, . . A9, . . Z, Z1, . . Z4}:

Query : SUWI [<WiSu_month> [<SuWi_month>]]
Stack : – >>> <offset> <do_it>

<offset> : 0, 3600, –3600
<do_it> : 1 = change, 0 = nothing

STATION : Station name
GROUP : Optional group name (not available via the control

panel)

Query : STATION [=<name>]
Ext : + – # %

74 GOSSEN METRAWATT GMBH

STATUS, STAT24V,
STATBAT, STATREL,
STATREL*,
STATCHECK

STATUS STAT24V STATBAT STATREL STATREL* STATCHECK

– The following links can be selected with STATCHECK:
0 : no linking, only system-internal functional standby (Sys)
1 : Sys + lithium battery OK (Bat) + 24 V output voltage OK (24 V)

– As soon as one of the conditions is no longer fulfilled, the status relay is
released and the status LED is extinguished.

– The station can be tested with the ERRSTAT command, even if no linking
has been selected with STATCHECK. Individual errors can be masked
accordingly, and the status relay and the status LED can be manipulated
via the background program with the STATREL* =0 command.

STATUS
(STAT)

: Read out a device status message

Query : STATUS
Output : yes
Stack : – >>> –
Ext : + $ ##

STAT24V : Status of 24 V output voltage
Query : STAT24V
Output : no
Stack : – >>> {1 | 0} 1: OK, 0: Error

STATBAT : Status of lithium battery for memory backup
Query : STATBAT
Output : no
Stack : – >>> {2 | 1 | 0} 0: Error, 1: OK

U1601
only: 2: Battery nearly depleted

STATREL : Status of the status relay
Query : STATREL
Output : no
Stack : – >>> {1 | 0} 1: OK (relay ON),

0: error (OFF)

STATREL* : Release status relay for 10 s (OFF)
Query : STATREL* = 0 Status relay deactivated

for 10 s
Query : STATREL* = 1 Reactivate status relay

STATCHECK : Set / query linking of device status relay to status for
24 V output voltage and lithium battery status

Query : STATCHECK [=<value>]
Output : yes
Stack : – >>> <value> 0: NOT linked

1: linked (default)
Ext : + – %

GOSSEN METRAWATT GMBH 75

SYNCSYNC : Generate Interval Transition, or Query Interval Status

– FROM and TO are always set in accordance with the current interval.
– The following applies to intervals <= 5 s:

<SyncFlag> == 2 : Sync command currently executing (<ls)
<SyncFlag> == 1 : other

Query : SYNC = The current interval is
ended.
Prerequisite:
INTERVALSOURCE ==
PROG

Stack : – >>> –
Ext : + The current interval is

ended regardless of the
interval source setting!

Query : SYNC Queries whether interval
transition has been
reached

Output : no
Stack : – >>> <SyncFlag> <SyncFlag> == 0:

otherwise
<SyncFlag> == 1: for 5 s
after interval transition (see
below)
<SyncFlag> == 2: Sync
command currently
executing (< 1 s)

Query : SYNC*
Output : no
Stack : <NumberOfIntervalsSincePowerON> (max. 255)

Query : SYNC**
Output : no
Stack : <TotalIntervals> (max. 65535)

Query : SYNC/
Output : no
Stack : <CurrentIntervalLengthInSeconds>

76 GOSSEN METRAWATT GMBH

System Functions SysRESET SysTEST SysSN SysDC SysOPEN LANGUAGE

– SYSTEST <number> checks the ECS LAN. 64 user data bytes are
exchanged <number> times for test purposes with the referenced station
(32 bytes to and 32 bytes from). If there is no other ECS LAN traffic, the
measured baud rate is equal to transmission line quality.

Example
<A> B: systest 100
6400 bytes are exchanged between stations A: and B:, required time and
the baud rate are subsequently read out.
IMPORTANT: Each additional ECS LAN segment between the two devices
reduces the baud rate (required time * n). RECOMMENDED VALUE (n = 1,
62K5 bd):

U1600 : 2000 . . 2500 bytes/s
U1610/15 : 2500 . . 3000 bytes/s
U1601 : 3000 . . 3500 bytes/s

– <openlevel> : 0 : disabled, >=1 : enabled
– Enabling must be performed with SYSOPEN in order to calibrate analog

channels, otherwise the following error message appears: "access
denied".

– Enabling is active for a period of 4 minutes after SYSOPEN, and is
extended for an additional 4 minutes each time a command is entered
within this period of time.

– If a device has been enabled, it is enabled at all ports (COM1,
COM2, . . .).

SYSOPEN functions throughout the entire ECS LAN, but only locally for the
U1600/10/15 (AA:station);
SYSOPEN–, SYSOPEN? are not available with the U1600/10/15.

SysRESET : Executes CPU reset
(similar to PowerOn reset)

Query : sysRESET = 0

SysTEST : Tests several system functions and prints results.
Query : sysTEST [<number<] [=0]
Stack : – >>> ESCC2[L] ESCC2[R]
Ext : – . &

SysSN : Query device serial number
SysDC : Query calibration date code
Query : SYSSN
Stack : – >>> –

SysOPEN : Enable access to specific internal functions:
Query : SYSOPEN SYSOPEN– SYSOPEN?
Function : enable disable –
Output : no no no
Stack : – >>> – – >>> – – >>> <openLevel>

GOSSEN METRAWATT GMBH 77

– The availability of languages depends upon the firmware revision level.
– The ECL interpreter is bilingual only (German / English).

German and English commands can be mixed as desired, however, the
output language is determined as follows: German where
<country> == 1, English where <country> >= 2

– Only the first letter of the <country> must be entered, and no
differentiation is made between upper and lower case letters.

– Ext. ‘|‘ pushes the current language index to the stack during reading.
– LISTLANGUAGE generates a list of all available languages (U1600: n.a.)
– Select German: LANGUAGE = German or LANGUAGE = 1
– Select English: LANGUAGE = English or LANGUAGE = 2

DAYBEGDAYBEG : Variable Beginning of Day

Default setting = 00:00:00
This setting affects all past and future day beginnings and may not be
altered dynamically!

TARIFFTARIFF : Query or Set Current Tariff

<tariff> = {1 | 2}; ’1’: Tariff 1, ’2’: Tariff 2
– With ext ’*’, <tariff> = {0 | 1}; 0’: Tariff 1, ’1’: Tariff 2

Examples (with ext ‘*‘):
1. Tariff T2 applies between 22h00 and 6h00, and otherwise T1:

H 10= ‘hh,6,<,hh,22,>, | ,tariff* =.‘
2. Tariff T2 applies on weekends (Saturday and Sunday):

H10 10= ‘wday,6,>=,tariff* =.‘

LANGUAGE : Sets the user interface language at the control
panel.

Query : LANGUAGE [=<country>]
Output : yes
Clipboard : yes
Stack : – >>> –
Ext : + – # . $ %

<country> : 1 | D | GERMAN | G | GERMANY
: 2 | E | ENGLISH
: 3 | S | SPANISH | ES | ESPANGNOLE
: 4 | I | ITALIAN

5 | F | FRENCH

Query : DAYBEG [=<time_of_dayBegin>]
Stack : – >>> <time_of_dayBegin>
Ext : – . # &

Query : TARIFF [=<tariff>]
Output : yes
Stack : – >>> <tariff> (when reading)
Ext : + – * %

78 GOSSEN METRAWATT GMBH

KEY KEY (TT) : Transfers keystrokes executed at the control panel.

<keySequence> elements, maximum length is 20 elements:

Example
KEY x++++4
x sets the control panel to the default display, 4* ’+’ moves to channel 5.
4 stands for F4, i.e. change to Pmom.

LOCKKB, LOCKKBM LOCKKB, LOCKKBM : Disable the Keyboard (or selected keys)

(U1601 as of V2.45, U1600: n.a.)

The entire keyboard, or selected keys only, can be disabled based upon a
timeout, i.e. the disabling command is only valid for a specified period of
time, after which enabling occurs for safety reasons. These commands are
used primarily in H programs.

LOCKKB : Disable the Entire Keyboard

– If a key is pressed after disabling has been activated, the "KEYBOARD
DISABLED" message appears briefly at the display.

Query : KEY <keySequence>
Output : none
Stack : – >>> –

1 . . 5 : F1 . . F5
+ : scroll up
– : scroll down
< : scroll left
> : scroll right
m : Menu
s : Setup (same as "press and hold menu key for 1 s")
: Enter
! : ESC
q : ESC-ESC (return to first level).

(U1600/10/15 n.a.)
u : Shift (U1600 only, same as "press scroll up and down

keys simultaneously")
l : Enter delete menu or similar function
x : Set to default status (normal display with Etot,

channel 1)

Query : LOCKKB [= <disable_duration>] <disable_duration>
Output : yes
Stack : – >>> <remaining_disable_duration>

0 : Cancel disabling
1 : 5 s disabling
2...60: Disable duration in
[s]

GOSSEN METRAWATT GMBH 79

LOCKKBM : Selective Keyboard Disabling (with key mask) for 60 s

– Bit positions: (MSB) bit 31 .. bit 0 (LSB)
– Bit value: 1 = key disabled, 0 = key enabled;

With <meld>: 1 = "KEYBOARD DISABLED" message appears,
0 = no message

– Masks can be understandably formulated using binary notation
("0b" prefix).

Example
Disable UP + DOWN keys, message if these keys are activated:
LOCKKBM = 0b1000000001100000 or
LOCKKBM = 32864

Trigonometric
Functions

SQRT SIN COS ASIN ACOS DEG RAD EXP LOG :
Mathematical Functions

Query : LOCKKBM [= <disabling_mask>]
Output : yes
Stack : – >>> <disabling_mask>

<disabling-
mask> : Key Bit Key Bit Key Bit

F1 0 LEFTS 8 SETUP 16
F2 1 ENTER 9 DEL 17
F3 2 MENU 10 X 18
F4 3 ESC 11 ESCESC 19
F5 4 AUTO 12 –
UP 5 MAN 13 –
DOWN 6 LR 14 –
RIGHT 7 <meld> 15 –

Stack:
SQRT : x >>> square root (x)
SIN : x >>> sine (x) based upon radian measure
COS : x >>> cos (x)
ASIN : x >>> asin (x) opposite of SINE
ACOS : x >>> acos (x)
DEG : x >>> ((x/pi)*180) convert radian measure to

degrees
RAD : x >>> ((x/180)*pi) convert degrees to radian

measure
EXP : x >>> (e to the power of x)
LOG : x >>> LOGe (x)

PI : – >>> pi 3.141592653589793

80 GOSSEN METRAWATT GMBH

TX1, TX2 TX1 TX2

– The string may have a length of up to 127 characters.
– Send command output (uses the clipboard):

ETOT– – 1, TX2 $
– The string may be sent to other stations as well.

VER VER : Read Out Current Software Version

LVER LVER : Read out current ECS LAN version for determining scope of ECL
commands available at the addressed ECS LAN user (as of Dec. 2001)

– Example of '|' ext., which simply reverses the stack order:
Only code as of LAN version � 2 is to be executed, and it is unknown
whether or not the firmware recognizes the LVER command:

 VER@|-,dr,2,>=,if, // execute ... only as of LV 2
 VER@|-,dr, ! // stack output: LV or 0

FROM TO DURATION FROM TO DURATION.

The two variables FROM and TO are set as soon as a corresponding
command with extension / or ^ is used. The period of time which elapses
between FROM ... TO can be set in seconds with DUR.

TX1 : Send a string to COM1
(with COM2-MIX to COM2)

Query : TX1 <character_string>

TX2 : Send a string to COM2
Query : TX2 <character_string>

Query : VER
Output : yes
Stack : – >>> <versionNumber>
Ext : + – . $ # %

Query : LVER
VER@ (alternative command form – always available)

Output : yes
Stack : – >>> <LAN_code> <LAN_version_number>
Ext : + – . $ # % |

FROM TO : Query time-number of last output "with time"
DURATION
(DUR)

: Duration of time FROM ... TO in seconds

Query : FROM
Output : no
Stack : – >>> <timeNumber> <timeNumber>: second

count as of 1.1.1990

GOSSEN METRAWATT GMBH 81

Date/Time <timeNumber>
Notes concerning the use of extensions / and ^

Modification of output defined by / or / / or / / /
(/ always precedes ^)

TIME, DATETIME DATE : Set or Query System Time and Date

– <timeString> format: 12:36:00 or 2h15
– <dateString> format: 17.03.92 or 26.02 [see DATEFORMAT regarding

date formats]
– <timeNumber> is the second count as of 1.1.1990.
– TIME / / always displays time and date, DATE / / always displays date and

time.
TIME / / = 30.11 11h can be used to set time/date or date/time together.

– See TIMECOMPARISON for time comparisons.
See SUWI regarding daylight savings time.

– TIME* pushes (<timeNumber>.<secondsFraction>)
See DCF77 for synchronization to radio controlled clock.

– Time measurements: [command doublet TM / TMD (== ZM / ZMD)]
’tm, <Block>, tmd, !’ displays length of <Block>, stack must conform!
’a = t, <Block>, a, tmd, !’ displays length of <Block>, stack irrelevant.
Time indicated in seconds with 1/100 s.

– Ext. ‘^‘ changes the order of Time/Date and/or selects a database-
compatible date format. DATE/^^ � 19980427 [see also FROM]

– Ext. ’_’ : Operating hours counter is used instead of real-time. See TIME
COMPARISONS.

/ : ^ : Output with time "to"
/ / : ^ ^ : Output with time "from ––to"
/ / / : ^ ^ ^ : Output with time "from"
/ / / / : ^ ^ ^ ^ : Suppress output (TO and FROM are

nevertheless set)

/ ^ : Output time/date instead of date/time
31.12.93;17:33:56

/ ^ ^ : Output date/time, date in DBase format yyyymmdd
19931231;17:33:56

/ ^ ^ ^ : Output time/date, date in DBase format yyyymmdd
17:33:56;19931231

/ ^ ^ ^ ^ : Date/time delimiter ’;’ � ’ ’ (suitable for MS-EXCEL)
31.12.93 17:33:56

/ ^ ^ ^ ^ ^ : Time/date delimiter ’;’ � ’ ’ (suitable for MS-EXCEL)
17:33:56 31.12.93

Set Query Display time
Query : TIME =

<time string<
TIME TIME .

Output : no yes : hh:mm:ss yes : hh:mm:ss
Stack : – >>> – – >>> <timeNo.> <timeNo.> >>> –
Ext : + – * . / ^ _ %

82 GOSSEN METRAWATT GMBH

Note☞
Only time queries made with the commands TIME or DATE result
in a read-out of actual time or operating hours counter time from
the addressed stations. All other time commands make reference
to the station at which the command was physically executed (as
if ID AA: were always placed in front of the command).

TM / TMD: Time Measurements
‘tm, <Block> , tmd,!‘ reads out duration of <Block>,

stack must conform!
’a =t, <Block> ,a,tmd,!‘reads out duration of <Block>,

stack irrelevant.
Time indicated in seconds with 1/100 s.

System Time
Comparisons

System Time Comparisons

– Since the entry for the point in time may also include the place holder "x",
an entire time range can be used (see example).

– If IF <timePoint> is used in H programs, the condition is only fulfilled
once per second during the valid time range.

– If cycle time for the H programs is greater than 1 second, a special
process assures that points in time are not omitted.

– If system time has been synchronized (e.g. by means of the DCF77 radio
controlled clock), time deviations (+/–1 ... 3 s) cannot be avoided. Setting
system time forward is covered by the above mentioned process, but
setting system time back does not allow for the re-recognition of points in
time if deviation is less than -3 s (U1600: n.a.).

Example
h10 = ’IF 17.3 xh10.xx, rel 1 = 1, else, rel 1 = 0’
Relay 1 will be activated for one minute at every full hour + 10 minutes on
the 17th of March.

Operating Hours Counter Time
– Extension ‘_‘ with TIME, TM_, TMD_, SYNC_/, a=t_ etc. uses

operating hours counter time (zero after master reset) instead of real
time.

– Important for time duration measurement (for example when switching
back and forth between daylight savings and standard time).

Observe station references for time queries, see TIME!

Query : IF <date_or_timeString> [<timeString>]
(IFF also possible)

Stack : – >>> –

GOSSEN METRAWATT GMBH 83

Time CounterTime Counter

– The HTD command is used exclusively in background H programs:

The time difference since the last HTD execution is pushed to the stack
(separately for every H program). Times longer than 60 s � 0 s.
– HTD* executes EXIT if result == 0:

HTD*, ... is thus identical to HTD,DUP,0,==,IF,EXIT,ELSE,...
Example of time counting (in seconds) with channels 10 ... 15, as long as
STARTSTOP for the respective channel is = 1:
H 10 = ’HTD, DELTA 10..15=.’
or in hours:
H 10 = ’HTD, 3600,/, DELTA 10..15=.’
Connect input 10 to STARTSTOP 10:
H 11 = ’IN– 10,STSP 10=.’

MCONST, URAT, IRAT,
PULSE, EDGE,
ONOFF, STARTSTOP,
CFIX, CFACTOR

MCONST Urat Irat PULSE EDGE ONOFF STARTSTOP (STSP)
CFIX CFACTOR : Channel Specific Parameters

Query : HTD
Stack : – >>> <TimeDeltaInSeconds>

MCONST : Meter constant <real>
Urat : Voltage transformation ratio <real>
Irat : Current transformation ratio <real>
PULSE : Pulse duration in milliseconds (10 ... 2550 ==

0, 01 s ... 2.55 s)
EDGE : active time edge or tariff assignment (binary input):

1: _ _ ––change: 0 V >>> 24 V (+) or 24 V �
Tariff 2
0: – – _ _ change: 24 V >>> 0 V (–) or 24 V �
Tariff 1

ONOFF : Switch channel ON/OFF:
1: ON 0: OFF
Control selection of * for channel enumerations:
1: START 0: STOP

STARTSTOP : Control pulse counting at the channel:
1: START 0: STOP

CFIX : Fixed decimal places for output
(0: 0 1: 0.0 2: 0.00 or 3: 0.000)

CFACTOR : General factor for energy and power (U1600: n.a.)

Query : MCONST <enumeration> [=<assignment>]
Stack : – >>> value (when reading)
Ext : + – . # %

84 GOSSEN METRAWATT GMBH

2.3 Command
Equivalents

German – English Command Equivalents

The ECS operating system allows for entry of almost all ECL commands in
either English or German, regardless of the selected user interface
language. The online help function also accepts search terms in both
languages.
Designations for the following ECL commands have both German and
English names:

German English
AEINH AUNIT
AUFZ ENUM
BIS TO
DATUM DATE
DATUMFORMAT DATEFORMAT
DAUER DURATIO (DUR)
EEINH EUNIT
EGES ... ETOT ...
EINAUS ONOFF
EMAXTAG, ... YEAR EMAXDAY, ... YEAR
ERRKAN ERRCHAN
FLANKE EDGE
INTERVALL INTERVAL
INTERVALLQUELLE INTERVALSOURCE
JAHR YEAR
KANAL CHANNEL (CHAN)
KANALFIX CHANNELFIX (CFIX)
KENN ID
KOSTFAK1 KOSTFAK2 COSTFAC1 COSTFAC2
LOESCHKANAL ERACHAN
LOESCHLISTE ERALIS
LONKANAL LONCHANNEL
PASSWORT PASSWORD
PEGEL LEVEL
PEINH PUNIT
PFAKTOR PFACTOR
PMAXTAG, ... JAHR PMAXDAY, ... YEAR
PULS PULSE
RELAIS RELAY
RELAISMODE RELAYMODE
RELAISNAME RELAYNAME
SETKENN SETID
SPRACHE LANGUAGE
TAG DAY
TARIF TARIFF
TARIFQUELLE TARIFFSOURCE
TASTE KEY
TEINH TUNIT
VON FROM
WTAG WDAY
ZEIT TIME
ZKONST MCONST

GOSSEN METRAWATT GMBH 85

A
A Registers ..25
ALL ...24
ALL NEXTA ...24
Analog Processing ...26
Arithmetic Operators ...24
AUNIT ...36

B
BUS ..30
BUSL ..30
BUSR ..30

C
CFACTOR ...83
CFIX ..83
CHAIN ...31
CHANNEL ...51
CMODE ..52
Command Parameters ..19
COSTFAC1 ...53
COSTFAC2 ...53
COSTT1 ..36
COSTT1T2 ...36
COSTT2 ..36

D
DATE ..81
DATEFORMAT ..32
DAY ..46
DAYBEG ...77
DELIMITER ...32
DELTA ..33
DevKEY ...33
DIR ..34
DIRN ...34
DIRS ...34
DISPLAY ...34
DO ..67
DOWHILE ...67
DROP ..35
DUP ..35
DURATION ..80

DVIRT .. 35
DVSUM .. 35

E
ECL SYNTAX ... 17
EDAY ... 42
EDGE ... 83
EINT ... 38
EMAX ... 42
EMON .. 42
ENUM .. 29
ENUM@ ... 30
ERACHANNEL ... 53
ERALIST ... 53
ERR .. 38
ERRCHAN .. 38
ERRCHANLIST ... 38
ERRNR ... 38
ERRSTAT ... 38
ERRSTATLIST .. 38
ETOT .. 36
ETOTT1 ... 36
ETOTT1T2 ... 36
ETOTT2 ... 36
EUNIT ... 36
EXIT ... 43
Extensions ... 18
EYEAR .. 42

F
FDIR ... 43
FINDER .. 20
FLIST ... 43
FORI NEXTI .. 44
FORJ NEXTJ .. 44
FORK NEXTK ... 44
FORMAT .. 45
FREAD ... 43
FROM TO .. 80
FSIZE ... 44

G
General Information .. 17

3 Parameter Search Terms

Command Page Command Page

86 GOSSEN METRAWATT GMBH

General Numeric Manipulations 23
GROUP ... 73

H
H Programs ... 47
HBREAK ... 47
HH .. 46
HLIST ... 47

I
ID ... 21, 52
IF ELSE ENDIF ... 48
IFF .. 49
INDEX ... 49
INDIR .. 50
INPUT ... 50
INTERVAL .. 50
INTERVALSOURCE .. 51
IRAT ... 83

K
KEY .. 78

L
l.a. .. 17
LBERR .. 38
LERR .. 38
LEVEL .. 62
LOCKKB ... 78
LOCKKBM .. 78
LON GENERAL ... 54
LON MEASUREMENT DATA 54
LON PARAMETERS ... 54
LON RELAYS and INPUTS 54
LonCR .. 55
LONGNAME ... 51
LonID ... 55
LON-specific commands 54
LonSTOP ... 55
LVER .. 80

M
MCONST .. 83
MELD MELD2 .. 55
MENUAPP .. 56
MENUAPPN ... 56
MENUEDIT ... 56
MM .. 46
MON ... 46
MONBEG .. 57

N
n.a. ... 17
NF4I ... 58
NF4M ... 58
NF8I ... 58
NF8M ... 58
NFSTD ... 58

O
ONOFF ... 83

P
P Programs .. 67
Parameter Stack ... 20
PASSWORD ... 59
PAUSE .. 62
PDAY .. 42
PFACTOR ... 62
PICK ... 35
PINT ... 38
PLIST ... 67
PMAX ... 42
PMOM .. 36
PMON .. 42
POWERFAIL ... 63
POWERFAIL | ... 63
POWERFAIL@ ... 63
POWERON ... 63
PRINT ... 64
PRINT Format .. 64
PRINT Modifications .. 65
PULSE .. 83
PUNIT ... 36

Command Page Command Page

GOSSEN METRAWATT GMBH 87

PYEAR ..42

R
RELAY ..68
RELAYMODE ..68
RELAYNAME ..70
REM ..71
RETURN ..43
RS 232 Interface Protocol22

S
S0Pxxxx ..69
SET... ..71
SETID ..73
SORELAY ..68
SS ...46
STARTSTOP ...83
STAT24V ..74
STATBAT ..74
STATCHECK ...74
STATION ...73
STATREL ..74
STATREL* ...74
STATUS ..74
STRINGS ..21
SUWI ..73
SWAP ...35
SYNC ..75
System Functions ..76
System Time Comparisons82

T
TARIFF ..77
TARIFFSOURCE ..51
TFIX ..53
TIME ...81
Time Counter ...83
Trigonometric Functions79
TUNIT ...36
TX1 ...80
TX2 ...80

U
URAT ... 83

V
VER .. 80

W
WDAY .. 46

Y
YEAR .. 46

Command Page Command Page

Printed in Germany • Subject to change without notice

GOSSEN METRAWATT GMBH
Thomas-Mann-Str. 16-20
90471 Nürnberg, Germany

Phone +49-(0)-911-8602-0
Fax +49-(0)-911-8602-669
e-mail info@gmc-instruments.com
www.gmc-instruments.com

4 Product Support
If required please contact:

GOSSEN METRAWATT GMBH
Product Support Hotline
Phone +49-(0)-911-8602-112
Fax +49-(0)-911-8602-709
e-mail support@gmc-instruments.com

	1 ECL Interpreter
	1.1 Introduction
	1.2 Value Range, Numbers and Character Strings
	1.3 Arguments, Extensions, Assignments and Error Messages
	1.4 Aborting Programs
	1.5 The System Prompt and Online Help
	1.6 Overview of ECL Command Groups
	1.7 Tool Box
	2 ECL Command List
	2.1 General Information
	2.2 Command List
	2.3 Command �Equivalents
	3 Parameter Search Terms
	4 Product Support

